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A preliminary attempt to use climate data and satellite imagery to model
the abundance and distribution of Culicoides imicola (Diptera:
Ceratopogonidae) in southern Africa

M Baylisa*, R Meiswinkelb and G J Venterb

INTRODUCTION
The biting midge Culicoides imicola is

widely distributed in sub-Saharan Africa,
parts of North Africa and southern
Europe, and southern Asia13. Within that
wide geographical range, however, its
distribution is patchy and its abundance
varies dramatically from one location to
another. For example, recent studies over
2 years at 49 sites in Morocco and Iberia
identified 11 sites from which C. imicola
appears to be absent, and a 2000-fold
range in its abundance at sites where it is
present4.

In southern Africa C. imicola is believed
to be the major or only vector of the

viruses that cause several economically-
important diseases of livestock, including
bluetongue, African horse sickness,
equine encephalosis, bovine ephemeral
fever and Akabane virus infection14. The
considerable geographical variation in
the abundance of C. imicola has significant
implications for the risk of these diseases
to livestock and greater knowledge of the
smaller-scale distribution of this insect
may help with more focused and effective
vaccination, surveillance and control
measures.

For many reasons, however, detailed
mapping of the distribution and abun-
dance of C. imicola (or other insects) coun-
trywide is impractical. A better approach
is to attempt to understand the causes of
the geographical variation in abundance.
For vector-borne diseases, a common
approach here exploits the strong correla-
tion between certain climatic factors and
the distribution or abundance of most
terrestrial arthropods21. Armed with a

knowledge of climate, it is possible, in
theory, to derive ‘expected’ distributions
of vectors after identification of the most
significant climatic correlates of their
distribution or abundance. An added
advantage is that such maps can be
experimentally altered to anticipate the
effects of climate change although, it must
be noted, such predictions may be flawed
if they do not consider other determi-
nants of distribution6.

For climatic modelling of insect distri-
butions, a particularly useful technique is
the use of satellite imagery. Several
earth-viewing satellite sensors record
images that may act as surrogates for cli-
matic variables – that is, the images are
correlated to a greater or lesser degree
with certain climatic variables recorded
on the earth’s surface8. One such surro-
gate climatic variable is the normalised
difference vegetation index (NDVI), a
measure of the photosynthetic activity of
living green vegetation, and which is
correlated with functions of moisture
such as soil moisture7,17, saturation
deficit22 and rainfall22,24. Others include
the land surface temperature (LST),
which is correlated with temperature19,26,
and cold cloud duration (CCD), which
is correlated with rainfall25. The use of
satellite imagery has several advantages.
First, in some cases satellite images have
proved more effective than ground-
measured climatic variables at modelling
arthropod distributions2 3 because,
perhaps, of advantages of scale: satellite
images are averages over large areas
while weather stations record at very
specific point locations that may not be
representative of the general area. Other
benefits include global coverage (data are
available for the whole of the earth’s
surface so that interpolation between
weather station sites is not necessary),
there is usual ly a high temporal
frequency of the imagery (dekadal – 10
day – images are widely used) and that,
for historical, less-detailed images at least,
data are available either at low or no cost.

C. imicola abundance estimates for 33
sites in South Africa and 1 in Lesotho,
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ABSTRACT
Abundances of Culicoides imicola, the insect vector of several livestock viruses, including
bluetongue and African horse sickness, were recently published for 34 sites in southern
Africa, together with associated climate data. Here, these data are analysed statistically in
combination with certain satellite-derived variables, with the aim of developing predictive
models of C. imicola abundance. Satellite-derived variables were the land surface tempera-
ture (LST, a measure of temperature at the earth’s surface) and the normalised difference
vegetation index (NDVI, a measure of photosynthetic activity). Two models were devel-
oped: (1) climatic variables only and (2) satellite-derived and climatic variables. For model I,
the best model used a single predictor variable (the mean daily minimum temperature)
only, and accounted for nearly 34 % of the variance in C. imicola abundance. Two variable
climatic models did not perform significantly better. For model II, the best 1-variable model
used the annual minimum LST as a predictor of C. imicola abundance, and accounted for
nearly 40 % of the variance in C. imicola abundance. The best 2-variable model, which gave a
significantly better fit than the 1-variable model, combined the minimum LST and mini-
mum NDVI as predictors of C. imicola abundance, and accounted for nearly 67 % of
variance. A map of predicted C. imicola abundances is produced on the basis of this 2nd
model which, despite some anomalies, agrees largely with what is currently known of the
prevalence of C. imicola in the region.

Key words: climate, Culicoides imicola, LST, model, NDVI, rainfall, satellite imagery,
temperature.
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together with basic climate data, were
recently published29. Combined with
access to NDVI and LST data for the same
region, this prompted a preliminary
investigation into the use of both climate
and satellite data for modelling the distri-
bution and abundance of this vector in
southern Africa.

MATERIALS AND METHODS

Light trap collections and abundances of
C. imicola

Venter et al.29 made light-trap collections
at 34 sites in southern Africa between
January 1984 and September 1986. At
most sites (31) the light traps were posi-
tioned in the vicinity of livestock (usually
cattle, sheep, goats or horses) and it
follows that predictions about the abun-
dance of C. imicola elsewhere in southern
Africa apply only to similar situations.
The sites studied by Venter et al.29 covered
much of the region, although they were
not evenly distributed (Fig. 1); for
example, there were 7 sites in the immedi-
ate vicinity of Onderstepoort but only 5 in
the entire Northern and Western Cape
provinces.

Average abundances of C. imicola were
calculated from data presented by Venter
et al.29 by first calculating a mean Culicoides
total per catch per site (i.e. total number of
Culicoides divided by the number of
collections; Table 3 in Venter et al.29) and
then multiplying by the proportion of the
Culicoides catch per site that were C.
imicola (Table 4 in Venter et al.29). There
was a large range in sampling effort: at
8 sites only 1 collection was made and at
14 sites fewer than 5 collections were
made, while at 1 site there were 146 collec-
tions (median = 15). As the abundance of
C. imicola is highly seasonal, and there is
large daily variation in its activity rate2,
estimates of abundance based on 1 or very
few light-trap catches are likely to be
inaccurate.

Climate data
Venter et al.29 presented long-term aver-

age climate data, obtained from the South
African Weather Bureau (SAWB), for the
34 sites. Distances between weather
stations and trap sites are not given but
were, in some cases, several kilometres.
The 4 sites nearest to Onderstepoort share
the same climate data. The climatic

variables given by Venter et al.29 are tem-
perature (annual mean daily maximum
and minimum, and annual minimum),
number of days with temperature <0 °C,
October–March rainfall, April–Septem-
ber rainfall and total annual rainfall. We
calculate an 8th variable (annual mean
daily average temperature) by averaging
the annual mean daily maximum and
minimum.

Satellite images
Satellite images of southern Africa were

derived from NASA’s Pathfinder ad-
vanced very high resolution radiometer
(AVHRR) land (PAL) dataset10 and were
kindly supplied by the TALA Research
Group, Oxford University. Images were
of 2 kinds, normalised difference vegeta-
tion index (NDVI) and land surface tem-
perature (LST).

NDVIs were calculated from data
recorded by channels 1 and 2 of the
AVHRR using the following equation:

NDVI
channel 2 channel 1
channel 2 channel 1

=
−
+

( )
( )

Possible values of NDVI range from –1
to +1 but are usually well within these
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Fig. 1: Distribution of the 34 sites sampled for Culicoides by Venter et al.29. The location of Port Elizabeth, which is nearly C. imicola-free, is
also shown.



limits. The utility of this ratio as a measure
of photosynthetic activity arises from the
absorption of light in the visible red wave-
length (corresponding to channel 1) by
plant tissues for photosynthesis, and the
reflection of the near-infrared (corres-
ponding to channel 2) that would
otherwise damage plant cells8,9.

Land surface temperature estimates (in
degrees Kelvin) were calculated from
data recorded by channels 4 and 5 of the
AVHRR using an equation derived by
Price19:

LST = channel 4 + 3.33 (channel 5 –
channel 4)

In this equation, channel 4 gives a
brightness temperature estimate (based
on Planck’s law); the 2nd part of the
equation modifies the estimate to allow
for attenuation of the signal by the atmos-
phere8,9.

All images were supplied as monthly
maximum composites (i.e. the largest
values per pixel per month, to allow for
lost data caused by cloud cover etc.) from
January 1988 to December 1990 (36 NDVI
and 36 LST images) in the Goodes-
Homolosine projection. Pixel sizes were
approximately 7.6 × 7.6 km. Values for
each of the 34 sites (using the coordinates
given by Venter et al.29) were obtained
from the 36 monthly images; from these,
annual maxima, means and minima were
calculated for 1988, 1989 and 1990. The 3
maxima, 3 means and 3 minima were then
averaged to give, for each site, an average
annual maximum, mean and minimum
NDVI and LST. Note that identical values
were obtained for sites situated close to
one another (e.g. at Onderstepoort).

Data analysis
Before analysis, the estimates of C.

imicola abundance were subjected to a
ln(n + 1) transformation to normalise the
distribution of the data, which was other-
wise strongly skewed towards low
values. In the 1st stage of the analysis, the
15 predictor variables (8 climatic, altitude,
3 NDVI and 3 LST) were correlated with
the C. imicola abundances. Thereafter, 2
models were developed. The 1st (model I)
was permitted to contain only climatic
variables and altitude as predictors, the
2nd (model II) was permitted to contain
any variables as predictors. The objective
was to compare models in which satellite
imagery can be incorporated with those
in which it is not.

Each of the 2 models was developed
manually using established procedures12

that test for a significant increase in the fit
of a model from the inclusion of an addi-
tional x-variable, with the objective of

deriving the most effective model from
the fewest variables. First, we constructed
a ‘full’ model in which all permitted
x-variables were included in a regression
on the y-variable (the transformed abun-
dance of C. imicola). The mean square
error (= residual SS/DF) of this model was
taken to be the best estimate of random
variability obtainable from the available
data and was then used to test the x-vari-
ables individually and in combination.
For this procedure, we began by testing
the x-variables individually and obtained
the best obtainable fit (in terms of model
SS) for a 1-variable model. We then de-
rived all possible 2-variable models and
examined whether the increase in fit from
the best 1-variable model was significant.
If this was the case, we proceeded with
adding 3rd variables. The procedure con-
tinued until no additional variables led to
a significant increase in the model SS. In
all cases, the test for a significant increase
in the model SS was an F-test based on the
difference in SS divided by the mean
square error of the full model, the change
in d.f. (= 1) and the error d.f. of the full
model.

Since total annual rainfall is the sum of 2
other predictor variables, and annual
mean temperature is the average of 2
others, there were problems of multi-
colinearity such that models including all
variables (i.e. the full models) could not be
fitted using standard software. Therefore,
these data were adjusted by a small (maxi-
mum 0.3 %) random deviation. Further-
more, at some sites there were incomplete
climate data: these sites were excluded
from the analysis until appropriate mod-
els were developed and then included for
the derivation of regression equations.

RESULTS
Table 1 gives the values of maximum,

mean and minimum NDVI and LST used
in the analyses here. Images of these
satell ite-derived variables for the
southern Africa region are shown in Fig.
2A–F. The coldest area in the region (in
terms of minimum LST) appears to be
parts of the Karoo and areas of altitude in
the Eastern Cape and Lesotho (Fig. 2A);
the least cold areas are in the northern
and eastern Northern Province, in the
Kruger National Park in particular
(Fig. 2A). The least hot area (in terms of
maximum LST) is the south coast and the
eastern third of the region; the hottest
areas are the Northern Cape, and parts of
Karoo, Northern Province, and Kruger
National Park in Mpumalanga (Fig. 2C).
The most barren area (in terms of mini-
mum NDVI) is the Karoo and parts of the
Kruger National Park; the least barren is
the south and east coasts and the

Drakensberg in Mpumalanga and the
Northern Province (Fig. 2D). The least
highly vegetated area (in terms of
maximum NDVI) is the Karoo; the most
highly vegetated area is the southwest of
Western Cape, the south coast and the
eastern parts of the region (Fig. 2F).

Correlations among predictor
variables

There were strong correlations among
many of the predictor variables (Table 2),
and in particular among those of each
type (e.g. the temperature variables de-
rived from SAWB data, the LST variables
and the NDVI variables). Winter and
summer rainfall levels were not signifi-
cantly correlated with each other, and
total annual rainfall was strongly corre-
lated with summer, but not winter rain-
fall. The LST variables were strongly
positively correlated with temperature
while correlations with rainfall were
weaker and negative. Conversely, corre-
lations between NDVI and temperature
were mostly weak while correlations with
rainfall (especially the annual total) were
strong and positive. The NDVI variables
were negatively correlated with the LST
variables.

Correlations of predictor variables
with C. imicola abundance

The average abundances of C. imicola
are shown in Table 1. At one site (Rhodes)
no C. imicola were caught; at the remain-
ing sites mean catches of C. imicola ranged
by 4 orders of magnitude from 4 to over
40 000 (median = 221).

Of the 15 predictor variables, the most
strongly correlated with the abundance
of C. imicola was the minimum LST (Table
3). There were also strong, positive corre-
lations between abundance and the
annual mean daily maximum, average
and minimum temperatures. There were
significant, negative correlations between
abundance and the number of days <0 °C
and with altitude (i.e. the more the days of
frost, or the higher the altitude, the fewer
the C. imicola). There were no significant
correlations between abundance and
either rainfall or NDVI.

Model I – climate data only
As individual predictor variables, alti-

tude and all temperature variables were
significant. The rain variables were not
significant. The best 1-variable model was
that of mean daily minimum temperature
on C. imicola abundance (F1,19 = 13.4, P =
0.003; R2 = 33.8 %). The best 2-variable
model combined mean daily average
temperature and total annual rainfall
(R2 = 44.7%). However, the increase in fit
from 33.8 to 44.7 % approached, but did
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Table 1: Average catches of Culicoides imicola at the 34 sites studied by Venter et al.29, and the annual maximum, mean and minimum NDVI
and LST at the same sites.

NDVIa LSTb (°C)

Collection site C. imicola Max Mean Min Max Mean Min

Onderstepoort: Stable 3 702.9 0.47 0.31 0.15 49.4 37.8 27.1
Onderstepoort: Camp 168 901.7 0.47 0.31 0.15 49.4 37.8 27.1
Potchefstroom 194.3 0.41 0.26 0.10 49.1 36.7 25.2
Ukulinga (Pietermaritzburg) 141.0 0.55 0.39 0.14 44.6 34.1 24.0
Kimberley 202.7 0.30 0.17 0.08 60.8 41.6 24.3
Stellenbosch 264.8 0.46 0.36 0.23 52.6 33.6 17.3
Middelburg (Eastern Cape) 4.1 0.34 0.18 0.10 55.7 37.5 19.2
Diepsloot 396.5 0.44 0.30 0.17 47.3 36.4 26.2
Allerton (Pietermaritzburg) 324.0 0.60 0.45 0.20 39.5 30.8 20.0
Adelaide 1232.6 0.51 0.35 0.22 47.8 32.7 20.1
Eiland 41258.4 0.45 028 0.12 57.7 44.7 34.1
Karakul (Upington) 13.0 0.28 0.17 0.06 61.7 43.2 24.5
Roma 17.4 0.48 0.28 0.16 46.2 31.3 18.2
Louis Trichardt 909.8 0.58 0.42 0.21 41.3 32.3 24.7
Dohne 776.1 0.54 0.39 0.22 39.3 29.3 18.4
Veekos (Upington) 52.4 0.28 0.17 0.06 61.7 43.2 24.5
Hluhluwe 23801.4 0.56 0.43 0.25 40.3 34.3 27.6
Messina 1680.8 0.33 0.18 0.10 61.2 48.4 36.0
Glen 325.5 0.39 0.27 0.17 54.0 37.1 22.4
Steytlerville 14.3 0.31 0.15 0.04 59.3 38.3 21.0
George 17.8 0.47 0.36 0.20 40.8 26.1 17.0
Tshipise 1555.3 0.33 0.20 0.09 58.9 47.1 34.7
Bergpan 1212.5 0.43 0.21 0.10 54.6 39.4 28.2
Irene 81.7 0.40 0.28 0.15 48.0 36.7 24.4
Soutpan 144.0 0.39 0.23 0.07 57.4 42.1 29.3
Tugela 19.9 0.58 0.41 0.20 42.7 34.3 25.3
Ermelo 4.0 0.50 0.28 0.12 44.5 33.5 22.6
Groblersdal 293.1 0.46 0.31 0.17 53.6 40.4 27.4
Honingneskrans 46.3 0.47 0.31 0.15 49.4 37.8 27.1
Loskopdam 50.0 0.51 0.33 0.15 52.2 38.6 26.8
Middelburg (Mpumalanga) 38.0 0.53 0.30 0.13 45.5 33.5 23.5
Mtubatuba 248.9 0.59 0.43 0.24 45.0 36.5 26.7
Onderstepoort: Kaalplaas 240.1 0.47 0.31 0.15 49.4 37.8 27.1
Rhodes 0 0.37 0.25 0.14 34.0 20.6 9.9

aNormalised difference vegetation index.
bLand surface temperature.

Table 2: Correlation coefficients among the climatic and satellite variables used in this study. Tmx, Tav, Tmn, annual mean daily maximum,
average and minimum temperature; Tlow, annual minimum temperature, T < 0, days under 0 °C, Rsum, Rwin, Rtot, summer, winter and total annual
rainfall; Alt, altitude; LSTmn, LSTav, LSTmx, annual minimum, mean and maximum land surface temperature; NDVImn, NDVIav, NDVImx, annual
minimum, mean and maximum normalised difference vegetation index.

Tav Tmn Tlow T < 0 Rsum Rwin Rtot Alt LSTmn LSTav LSTmx NDVImn NDVIav NDVImx

Tmx 0.910 0.712 0.308 –0.343 –0.281 –0.588 –0.525 –0.498 0.835 0.819 0.608 –0.309 –0.226 –0.202

Tav 0.939 0.659 –0.657 –0.285 –0.393 –0.440 –0.713 0.781 0.683 0.431 –0.082 0.005 –0.002

Tmn 0.857 –0.837 –0.250 –0.161 –0.302 –0.794 0.632 0.479 0.227 0.116 0.195 0.164

Tlow –0.755 –0.081 0.249 0.040 –0.694 0.299 0.069 –0.146 0.406 0.471 0.385

T<0 0.085 –0.151 0.010 0.763 –0.370 –0.281 –0.147 –0.226 –0.343 –0.241

Rsum –0.052 0.890 0.439 0.036 –0.362 –0.627 0.364 0.568 0.690
Rwin 0.408 –0.245 –0.598 –0.623 –0.458 0.622 0.518 0.375

Rtot 0.290 –0.240 –0.615 –0.782 0.616 0.755 0.802
Alt –0.362 –0.311 –0.195 –0.286 –0.319 –0.226

LSTmn 0.844 0.525 –0.265 –0.170 –0.098

LSTav 0.884 –0.569 –0.548 –0.511

LSTmx –0.717 –0.772 –0.754
NDVImn 0.901 0.801
NDVIav 0.942

Underlined values P < 0.05; italic P < 0.01; bold P < 0.001.
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Fig. 2: Satellite-derived variables investigated as predictors of Culicoides imicola abundance. LST land surface temperature, a measure of soil temperature. Scale is in degrees Celsius. NDVI
normalised difference vegetation index, a measure of vegetation levels and, indirectly, soil moisture.



not reach, significance (F1,19 = 4.3, P = 0.1).
We conclude that of the climatic variables
used here, therefore, the best model is of
mean daily minimum temperature as a
predictor of C. imicola abundance. The
regression equation for this model is
Ln(n + 1) = 0.76 + 0.397T where n is
the abundance of C. imicola and T is the
mean daily minimum temperature. The
relationship between observed and
predicted abundances is shown in Fig. 3A.

Model II – climate and satellite data
As in Model I, altitude and all tempera-

ture variables were significant as individ-
ual predictors and the rain variables were
not significant. Five of the 6 satellite
variables were also significant predictors

of C. imicola abundance, the exception
being the maximum LST. The best
1-variable model was that of minimum
LST on C. imicola abundance (F1,13 = 32.2,
P = 0.0002; R2 = 38.2 %). The best
2-variable model combined minimum
LST and minimum NDVI (R2 = 66.9 %)
and the increase in fit was significant
(F1 ,13 = 24.1, P = 0.0006). The best
3-variable model combined minimum
LST, minimum NDVI and summer rain-
fall (R2 = 71.3 %). However, the increase in
fit over the best 2-variable model was not
significant (F1,13 = 3.7, P > 0.1). We con-
clude that of all variables used here, there-
fore, the best model combines the
minimum LST and minimum NDVI as
predictors of C. imicola abundance. The

regression equation for this model is
Ln(n + 1) = –94.0 + 0.323LST + 19.7 NDVI
where n is the abundance of C. imicola,
LST is the minimum LST and NDVI is the
minimum NDVI. The relationship be-
tween observed and predicted abun-
dances is shown in Fig. 3B.

Images of the minimum LST and mini-
mum NDVI (Fig 2A,D) were combined ac-
cording to the above regression equation
to generate a map of predicted C. imicola
abundance in the southern Africa region
(Fig. 4). For the purposes of interpretation
it must be noted that the predicted abun-
dances in Fig. 4 are for where light trap-
ping occurs in the presence of domestic
livestock (i.e. under the conditions used
by Venter et al.29). The high abundances
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Fig. 3: Predicted versus observed abundances of Culicoides imicola. A: Model I, predicted abundances derived from 1-variable model
using mean daily minimum temperature. B: Model II, predicted abundances derived from 2-variable model combining the minimum LST
and minimum NDVI.

Table 3: Descriptive statistics of the predictor variables obtained for the 34 sites studied by Venter et al.29

Predictor variable na Meanb Rangeb r c

Temperature (°C) Annual mean daily maximum 34 25.3 19.6–29.4 0.527**
Annual mean daily average 34 18.2 11.9–23.4 0.579***
Annual mean daily minimum 34 11.0 4.1–17.3 0.542***
Annual minimum 33 –1.1 –8.0–8.2 0.333
Days < 0 °C 29 23.8 0–93.3 –0.514**

Rainfall (mm) October–March 31 470 124–747 0.059
April–September 31 130 36–473 –0.072
Total 31 600 169–927 0.022

Altitude (m) 34 972 100–2800 –0.480**
LST (°C) Annual minimum 34 24.46 9.87–35.97 0.622***

Annual mean 34 36.62 20.61–48.38 0.393*
Annual maximum 34 49.85 34.00–61.73 0.134

NDVI Annual minimum 34 0.15 0.04–0.25 0.285
Annual mean 34 0.30 0.15–0.45 0.264
Annual maximum 34 0.45 0.28–0.60 0.230

*P < 0.05; **P < 0.01; ***P < 0.001.
aNumber of sites.
bMean and range from among the 34 sites.
cCorrelation coefficient with the annual mean abundance of C. imicola.



predicted for the northern Kruger
National Park, for example, are not those
actually expected in the wildlife reserve
but are, rather, predictions for the theo-
retical case that the area be farmland
instead.

DISCUSSION
The entomological data on which our

study was based suffered from the limita-
tion of very unequal sampling effort
across sites. In particular, at 14 of the 34
sites our estimate of the ‘abundance’ of C.
imicola was based on fewer than 5 light-
trap catches. Given the large day-to-day
variation in the activity rate of C. imicola
reported elsewhere2, and the strong
seasonal trend in C. imicola abundance in
South Africa30, such estimates must be
prone to error. Factors not directly consid-
ered in our models, but which might be
expected to affect the abundance of C.
imicola on farms, are the types and num-
ber of livestock in the vicinity of the
light-trap, farming practises (e.g. methods
and extent of irrigation, use of insecti-
cides, storage conditions of animal dung),
soil type and moisture (i.e. suitability for
breeding sites) and other, unmeasured cli-
matic factors (e.g. wind speed). In the light
of these reservations, it seems remarkable
that simple 2-variable models comprising
satellite imagery (LST, NDVI) can account
for two-thirds of the variation in the
abundance estimates. These findings
underline the usefulness of satellite
imagery as the basis for mapping the
distribution of insect vectors.

Our results suggest at least 3 major
advantages of using satellite imagery for
climatic modelling.

Firstly, variables derived from satellite
images performed better than the climatic
variables in the predictive modelling. The
reasons for this are unclear. The climate
data, obtained from the SAWB, were from
synoptic weather stations at some dis-
tance from the trap sites and it is likely
that the modelling would have been more
effective had weather data been available
for the trap sites themselves. It is also
possible that the satellite images recorded
more biologically relevant data than the
weather stations. LST, a measure of the
temperature at the earth’s surface, may be
more equivalent to soil temperature than
air temperature in areas of little vegeta-
tion cover (and hence the very high
values in some areas)19, while NDVI, an
index of vegetational activity, is a particu-
larly good measure of soil moisture7,17. It
has been suggested recently that soil
conditions are particularly important in
determining the distribution and abun-
dance of C. imicola3,15,16 through effects on
the juvenile stages, and it is possible,

therefore, that satellite images performed
better than the climatic variables because
of their more direct measure of these
conditions. On that basis, one might
expect climatic modelling to be improved
were soil temperature and soil moisture
to be recorded directly, in place of air
temperature and rainfall. Such data are
relatively difficult and expensive to
obtain and, anyway, suffer the disadvan-
tage that both can vary considerably over
small areas of ground1,19. Indeed, the main
reason that the satellite imagery performs
well in modelling of this type may be that,
as a result of its limited resolution, it
records averages over relatively large
areas that may better reflect the condi-
tions experienced by insects than the very
location-specific data recorded by
weather stations.

The 2nd major advantage of using
satellite imagery is the relative ease and
low cost of obtaining appropriate data. In
the study of Venter et al.29, climate data
were obtained easily and cheaply from
the SAWB but, in many countries, synop-
tic weather stations may be very few and
the available data may have to be pur-
chased. An alternative approach, used in
the studies of Rawlings et al.20 and Baylis
et al.3, was to install and operate weather
stations as part of the scientific project,
but this was at a cost of several tens of
thousands of pounds sterling, and
imposed very heavy demands on the
running of the project. By contrast, the
satellite images used here can be readily
obtained over the internet, free of chargea.
Such images are obtained in a crude form
and require extensive processing, which
in turn demands appropriate computer
software and expertise, before they can be
used. Processing need be done once only,
however, and after processing, data can
be obtained for any site in Africa.

The 3rd major advantage of using satel-
lite imagery in predictive modelling is its
global coverage. A limitation of models
based on climate data is that, once a
model has been developed on the basis of
observations at certain study sites, it is not
straightforward to make predictions
about other sites for which climate data
are not available. In theory, we could have
proceeded to obtain temperature and
rainfall data for all 116 sites monitored
by the SAWB, and to have then used an
interpolation routine to generate a pre-
dictive map. Such a map would have been
based on 116 sites in an area of approxi-
mately 1 220 000 km2, or over 10 000 km2

per site. By contrast, satellite images
generally provide information about
entire regions and, as we have demon-

strated here, they can be readily
combined using GIS software to generate
a predictive ‘risk map’. In our map, which
uses relatively low-resolution imagery,
each pixel has an area of about 60 km2, but
it is also possible to produce such maps
with a pixel size of about 1.2 km2. Data
from other satellite platforms can be used
for even greater resolutions8.

The map of predicted abundances of C.
imicola presented here is the first of its
kind for any Culicoides. As suggested
earlier, its statistical basis suffers from an
uneven distribution of sites in southern
Africa, with particularly poor representa-
tion in the western half of the region.
Furthermore, the statistical model failed
to explain about 33 % of the observed
variation in C. imicola abundance, this
percentage being attributable, presum-
ably, to a combination of chance and the
aforementioned factors not included in
our model. To what extent, then, does the
map agree or disagree with our knowl-
edge of the distribution and abundance of
C. imicola in southern Africa, and what are
its limitations? A recently published
study declared the virtual absence of C.
imicola in the colder, high-lying area of the
eastern Free State27. The study area was,
roughly, just to the north of the northern
tip of Lesotho; in Fig. 4 predicted abun-
dances in this area are in the range 4–54.
Single night catches ranged, in fact, from
0–128, with a detransformed mean (after
log-transforming the catches) of 6.4. An
earlier study at 2 localities in the south-
western Free State11 reported only 44 C.
imicola in 40 nights of light-trapping
(albeit with a less efficient light trap than
that of Venter et al.29 i.e. not blacklight); in
Fig. 4 the predicted abundances at these
sites are in the range 1–24. For these
studies, therefore, the predictions are of
reasonable accuracy. Two other studies in
South Africa18,28 examined C. imicola abun-
dances in areas (Stellenbosch and Onder-
stepoort) that were also examined by
Venter et al.29 and hence should not be
compared, since data for those areas
helped develop the predictive model.
Considering unpublished data, Fig. 4
predicts a very low abundance, or even
absence of C. imicola in the Great Karoo
and Namaqualand and at the eastern tip
of Lesotho, an intermediate abundance in
the southwest of the Western Cape and
the northeast of Northern Cape, and a
high abundance just to the north of Swa-
ziland (all areas not studied in detail by
Venter et al.29); these predictions largely
concur with the findings of recent studies
(R M, unpubl. data, 1998).

However, discrepancies have also been
found between the actual abundances
of C. imicola on the ground and those
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Fig. 4: Predicted abundances of Culicoides imicola in southern Africa based on the 2-variable model combining minimum LST and minimum NDVI. Values are the predicted annual mean light-trap
catch of the vector when following the methods of Venter et al.29.
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predicted here. For example, at opposite
ends of a 350 km transect stretching from
Colesberg (in the light blue area just north
of Middelburg (EC) in Fig. 4) to Port Eliza-
beth on the southeastern coast, hundreds
to thousands of C. imicola were captured
at various sites around Colesberg,
whereas a total of only 1 individual was
captured at 7 sites around Port Elizabeth16.
These data are the inverse of what is pre-
dicted in Fig. 4. Such anomalies not only
indicate that the current data set lacks
detail but suggests too that the ecological
requirements of C. imicola may not yet be
fully understood. Two important parame-
ters omitted in the present model are soil
type and wind speed and are discussed
further below. It should also be borne in
mind that escalation in numbers of C.
imicola at specific sites can be artificial, that
is, C. imicola can become superabundant
where livestock are kept on irrigated
pastures, especially if these pastures
occur on clayey, moisture-retentive soils.
Finally, but of importance, the current
model has been generated from data
collected during years of average rainfall.
As shown by Meiswinkel16, C. imicola is
a species that can increase 200-fold in
seasons of above-average precipitation.
The extent to which C. imicola penetrates
areas peripheral to its normal distribution
during these periods is unknown.

A C. imicola-free region of South Africa
(an approximately 300 km2 area at Port
Elizabeth) was recently reported15. Subse-
quently, individual specimens of C.
imicola have been caught in the region
(R M, unpubl. data, 1998), demonstrating
that although the area may not actually
be C. imicola-free, the vector is neverthe-
less exceedingly rare. Fig. 4, however, sug-
gests that C. imicola should be present at
Port Elizabeth and the green pixels
indicate an annual mean abundance in
the range of 24–54. One reason for this
disparity, which underlines an important
limitation of satellite-derived maps like
Fig. 4, is that coastal pixels are generally
inaccurate: the inclusion of a large
amount of water in an area being mea-
sured for a terrestrial variable (such as
NDVI) inevitably leads to error. A 2nd fac-
tor to be considered is the importance of
sandy versus clayey soils. The absence or
near-absence of C. imicola at Port Elizabeth
has been attributed to the sandiness of the
soil, leading to low soil moisture and poor
microorganism content15. Subsequently,
soil sandiness has been negatively related
to C. imicola catches from a 1996 survey at
47 sites in South Africa16. NDVI must be, in
part, dependent on soil sandiness via the
response of vegetation to drainage7, but
this example indicates that soil sandiness,
in combination with rainfall, may be a

better predictor of the abundance of
C. imicola than NDVI alone. It is worth
noting, however, that there may be other
factors that contribute to the near absence
of C. imicola from Port Elizabeth apart
from sandiness. Recent studies have sug-
gested that higher wind speeds increase
the mortality rates of adult C. imicola5 and
that this may lead to lower population
sizes3. Wind speeds at Port Elizabeth are
the highest of 34 sites currently under
study in South Africa (M B, unpubl. data,
1998).

The value of Fig. 4 lies in its predictive
capabilities. To this end, it is noteworthy
that roughly in the centre of Fig. 4 (corres-
ponding approximately to Jan Kemp-
dorp, north of Kimberley) is an area of
high predicted abundance of C. imicola,
surrounded by significantly lower pre-
dicted abundances. This area may merit
surveying for C. imicola, both for epidemi-
ological purposes (to identify a possible
area of higher disease risk) and as a partial
test of the validity of the predictive map.

The best model of C. imicola abundance
combined the minima of LST and NDVI
while the means and maxima of these
variables were less effective as predictors.
Baylis et al.3 also found the minimum, as
opposed to the mean or maximum, NDVI
to be the more effective predictor of C.
imicola abundance in Morocco. They
suggested that this arises from the con-
currence in late summer of peak numbers
of C. imicola (and, hence, breeding site
demand) with the most barren time of
year (and, hence, the minimum NDVI).
Soil that is sufficiently moist to act as a
breeding site in late summer or autumn is
also soil capable of supporting some
vegetation at that time of year, and this
relationship is manifested in a correlation
between abundance and minimum
NDVI. The significance of the minimum
LST is, at present, unclear. The minimum
must correspond to winter temperatures,
however, and it may reflect the ability of
larvae to successfully overwinter.
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Book review — Boekresensie

The genetics of the pig

Editors: M F Rothschild & A Ruvinsky

1998. CAB International, Wallingford (UK) and New York (USA), 609 pp., hard cover. Price £60.00. ISBN 0 85199 229 3.

The history of modern pigs goes back about 5000 years
when the Chinese first began to domesticate the Eurasian
wild boar (Sus scrofa). This was apparently repeated inde-
pendently by Europeans some time later, the result being that
modern pigs have 2 lineages, Asian and European, with dif-
ferent morphological and behavioural characteristics. Inter-
estingly, it is contended in the book that the domestication of
pigs, certainly in China, was not only to provide a dependable
source of protein but also for organoleptic (taste) reasons.
Thus it is contended that few Chinese dishes do not contain
pork in one form or another and that 40 % of the red meat con-
sumed in the world today is pork.

This comprehensive overview of the genetics of domestic
pigs is the 2nd in a series by this publisher on the genetics of
domestic animals: the sheep was first and cattle will appar-
ently soon follow. According to the editors, this edition is
intended to provide a diversity of readers, including students,
researchers, veterinarians and pig breeders, with up-to-date
information on this rapidly evolving subject. In addition to
expected chapters covering aspects such as breeds and the
genetics of morphological features, including performance
and carcass traits, there are chapters on recent developments
in molecular, biochemical, immuno- and cytogenetics as well
physical chromosome maps. So if you would, for example,
like to know the basis of comparative chromosome painting,
the subject is covered in about 3 pages. These essentially
molecular subjects, while described in considerable scientific
detail, are nevertheless reasonably comprehensible to
non-specialists. As an illustration of the rapidity of their
development the editors point out that in 1990 only about 50

pig genes and markers had been mapped to individual chromo-
somes whereas by the end of 1997 this number was approaching
1800 loci. The chapter on linkage mapping describing how it is
done is excellent, while, at the end of the book, there are compre-
hensive genetic linkage maps for each of the 18 autosomal and both
sex chromosomes as well as a list of identified loci in the pig. Also
not expected, but interesting, is a chapter on the potentially
important exploitation of the genetics of behaviour.

There is a long list of inherited disorders in the chapter dealing
with this subject, with an indication as to the reliability of evidence
for single-locus inheritance of each disorder, as well as a bibliogra-
phy that will be useful to practitioners who specialise in pigs. How
discriminating this information is, however, is questionable be-
cause the information provided for the only condition described of
which the reviewer has some knowledge, namely spongiform
encephalopathy, is likely to mislead people with a limited back-
ground in the subject.

Other chapters cover the biology and genetics of reproduction,
transgenics and modern reproductive technologies, developmen-
tal genetics and a very useful chapter on the global programme for
the management of genetic resources as it applies to pigs. Finally
there is a chapter on standard nomenclature and a ‘pig genetic
glossary’.

This well written and edited book is recommended as a ready
reference for practitioners and researchers who specialise in the
diseases of pigs. It is also an excellent starting point for those of us
with an interest in establishing resistance to infectious diseases in
pigs despite the fact that this vital subject is not addressed directly.
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