# Microscopic morphology of *Dichapetalum cymosum* (Hook.) Engl. as an aid in the identification of leaf fragments from the digestive tract of poisoned animals

D van der Merwe<sup>a\*</sup> and L du Plessis<sup>b</sup>

## ABSTRACT

*Dichapetalum cymosum* (Hook.) Engl. (Poison leaf; gifblaar) is a major cause of acute livestock plant poisoning in southern Africa. Microscopic identification of leaf fragments found in the digestive tract of poisoned animals can assist in the diagnosis of poisoning when *D. cymosum* poisoning is suspected. The microscopic morphology of *D. cymosum* leaves are described using standard staining and microscopy methods for histopathology samples at many regional diagnostic laboratories. Morphological descriptions included structures in the epidermis and mesophyll that were discernible using H & E staining. The microscopic morphology of *D. cymosum* and other species from the same habitat with macroscopic features that resemble those of *D. cymosum*, including *Euclea crispa*, *Combretum zeyheri*, *Burkea afrikana* and *Lannea discolor*.

**Key words**: *Burkea africana, Combretum zeyheri, Dichapetalum cymosum, Euclea crispa, Lannea discolor,* plant poisoning, monofluoroacetate, rumen content microscopy.

van der Merwe D, du Plessis L **Microscopic morphology of** *Dichapetalum cymosum* **(Hook.) Engl. as an aid in the identification of leaf fragments from the digestive tract of poisoned animals.** *Journal of the South African Veterinary Association* (2006) 77(4): 197–201 (En.). Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.

## INTRODUCTION

The economic losses and social impact of plant poisonings of livestock in southern Africa is considerable<sup>5</sup>. *Dichapetalum cymosum* (Hook.) Engl. (poison leaf; gifblaar), which occurs in southern Angola, north-eastern Namibia, Botswana, southern Zambia, western and southern Zimbabwe, southern Mozambique and northern and eastern South Africa, is highly toxic to livestock<sup>2</sup>. It causes around 8 % of annual cattle losses due to plant poisonings in South Africa<sup>5</sup>.

The toxic principle of *D. cymosum* is monofluoroacetate<sup>7</sup>. Monofluoroacetate itself is not toxic, but it is converted in the animal to monofluorocitrate. Monofluorocitrate inhibits the enzyme aconitase, thereby the tricarboxylic acid cycle and cellular respiration<sup>6</sup>. It causes sudden death in animals, 4 to 24 hours after they have ingested lethal amounts of plant material<sup>4</sup>.

Owing to the rapidity of death in animals that have died of *D. cymosum* poisoning, leaf fragments of the plant that caused the poisoning can often be found in the digestive tract of poisoned animals. The presence of *D. cymosum* leaf fragments in the digestive tract of an animal that has died due to suspected plant poisoning is therefore considered to be an important factor in the diagnosis of *D. cymosum* poisoning<sup>4</sup>.

Microscopic examination of leaf fragments found in the digestive tract of poisoned animals can aid in the identification of *D. cymosum* leaf fragments recovered from rumen content. This study reports the characterisation of the microscopic morphology of *D. cymosum* leaves discernible by light microscopy using tissue sections prepared by standard histopathology procedures.

# MATERIALS AND METHODS

## Plant samples

Dichapetalum cymosum samples were collected from the northern slopes of the Magaliesberg in the vicinity of the Florauna suburb of Pretoria in the Gauteng Province of South Africa. Leaf samples were fixed in 10 % buffered formalin. Mature and immature leaf samples were obtained from 2 plants that differed morphologically regarding the density of trichomes (hairs) on the leaf surface. Leaves of plant species with reticulated leaf vein patterns, including *Burkea africana* Hook. f., *Combretum zeyheri* Sond., *Euclea crispa* (Thunb.) Guerke subsp. *crispa* and *Lannea discolor* (Sond.) Engl., were collected from the same habitat.

### Tissue preparation

The method of plant tissue preparation followed standard procedures for the preparation and haematoxylin and eosin (H & E) staining of animal tissues for histological examination in the Pathology Section of the Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria. The procedures used are widely known and commonly available at regional veterinary diagnostic laboratories.

Dichapetalum cymosum samples were also stained using McMannus' Periodic Acid Schiff's (PAS) method to compare it with H & E staining. PAS staining is commonly available at diagnostic laboratories for detecting fungi in histological tissue sections. It is an efficient stain for polysaccharides found in cell walls.

#### Microscopy

Microscopy was with a Leitz Laborlux D microscope fitted with  $\times 10$  eyepieces and  $\times 10$ ,  $\times 25$ ,  $\times 40$ , and  $\times 100$  (oil) objectives. All diagnostic features could be discerned using  $\times 10$ ,  $\times 25$  and  $\times 40$  objectives.

## RESULTS

#### Epidermis (outer cell layer)

The epidermis has 1 adaxial (facing the stem, usually the 'top' surface of the leaf and 1 abaxial (facing away from the stem) cell layer. The cuticle (waxy outer membrane) is well developed on both sides of the leaf.

Stomata (openings on leaf surface that allows for gas exchange) (Fig. 1) are rare or absent on the adaxial surface, but relatively common on the abaxial surface where they are randomly distributed.

<sup>&</sup>lt;sup>a</sup>Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.

<sup>&</sup>lt;sup>b</sup>Vetpath Veterinary Pathologists, Department of Pathology, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110 South Africa.

<sup>\*</sup>Author for correspondence. E-mail: dmerwe@vet.ksu.edu

Received: March 2006. Accepted: November 2006.



Fig. 1: Stomatal structure in the abaxial epidermis of a *Dichapetalum cymosum* leaf.

Stomata consist of 2 guard cells (cells lining the stomata openings) and 2 subsidiary cells (cells that connect guard cells with typical epidermal cells) and are paracytic, meaning that the longitudinal axes of the guard cells and the subsidiary cells are parallel to the stomatal apertures. Each guard cell is supported by a single subsidiary cell. Guard cells do not span the entire thickness of the epidermis. The guard cells are smaller than the surrounding epidermal cells, with diameters of one third to one half of subsidiary cells. The guard cells are raised above the surface of the epidermal layer. The cuticle extends onto the outside surface of the guard cells. It does not extend over the guard cells into the stomatal lumen. Guard cell wall protuberances are present on the outer guard cell walls. These protuberances are visible in dorsoventral sections as small, horn-like ridges in the centre of the outer cell walls and they appear to be part of the cuticle. In dorsoventral section, the guard cells and subsidiary cells usually appear rounded, compared to cube or brickshaped surrounding epidermal cells.

Large, intercellular substomatal chambers consistently occur in mature leaves (Fig. 2), but are absent or small in immature leaves.

Trichomes (hairs) are unicellular and non-flattened. They vary in density from very dense to very sparse or absent.

#### Mesophyll (internal leaf tissues)

One hypodermal cell layer (layer/layers of cells beneath the epidermis that differ structurally from the tissues beneath them) is present under the adaxial epidermis (Fig. 3). No hypodermis occurs beneath the abaxial epidermis (Fig. 2).

Parenchyma cells that contain large



Fig. 2: Abaxial side of a *Dichapetalum cymosum* leaf showing the epidermis with stomata, spongiform parenchyma and a secondary vein.

vesicles with yellow to orange coloured content on H & E staining are scattered through all parenchymal cell types.

Palisade parenchyma (columnar cells with longitudinal axes perpendicular to the epidermis) occurs only on the adaxial side of the leaf (Fig 3). They occur in 1 to 3 layers with 2 layers being the most prevalent. The cell walls typically have a beaded appearance due to multiple areas of cell wall thickening.

Spongiform parenchyma (irregularly shaped cells) occurs only on the abaxial side of the leaf (Fig. 2). The cell walls typically have a beaded appearance similar to that of the palisade cells. Large intercellular spaces are present in



Fig. 3: Adaxial side of a *Dichapetalum cymosum* leaf showing the epidermis and palisade parenchyma.



Fig. 4: Large vein of a *Dichapetalum cymosum* leaf showing the bundle sheath, bundle sheath extensions, inner sheath, xylem and phloem.

the spongiform parenchyma of mature leaves, but may be small or absent in immature leaves.

Larger veins (Fig. 4) are surrounded by bundle sheaths, consisting of a single layer of tightly packed, thin-walled parenchyma cells, which are elongated in the direction of the veins. Multi-layered bundle sheath extensions, consisting of more or less elongated cells with unequally thickened walls, connect the veins with the epidermis and are present on both sides of the leaf where large veins are present. In these areas palisade and spongiform layers are absent.

Sclerenchymal cells, a supporting tissue consisting of multilayered, elongated cells with markedly thickened walls, form the inner sheath layer around larger veins (Fig. 4).

The xylem (Fig. 4) consists of variably shaped cells arranged in dorsoventral rows on the adaxial side of the vascular bundles of large veins. The phloem consists of variably shaped cells in a random pattern on the abaxial side of the xylem of large veins. The cells of the phloem stain more basophilic than the cells of the xylem and the bundle sheaths on H & E staining.

## Venation characteristics

Venation is reticulate (Fig. 5). Side-veins branch in offset pairs and occasionally oppositely, from a central main vein, which runs from the leaf stem through the length of the leaf blade. Large sideveins anastomose with neighbouring large side-veins about three quarters of the way to the leaf margin to form a closed system. The central vein and large side Table 1: Anatomical features of leaves used to differentiate between Dichapetalum cymosum, Burkea africana, Combretum zeyheri, Euclea crispa and Lannea discolor.

|                                                   | Dichapetalum cymosum                                                                                                                                                                                                                                                             | Burkea africana                                                                                                                                                                                                                                                                | Combretum zeyheri                                                                                                                                                                                                                                                               | Euclea crispa                                                                                                                                                                                                                                                                | Lannea discolor                                                                                                                                                                                                                                                           |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Venation                                          | Reticulate                                                                                                                                                                                                                                                                       | Reticulate                                                                                                                                                                                                                                                                     | Reticulate                                                                                                                                                                                                                                                                      | Reticulate                                                                                                                                                                                                                                                                   | Reticulate                                                                                                                                                                                                                                                                |
|                                                   | Central vein with alternately to oppositely branching side-veins                                                                                                                                                                                                                 | Central vein with alternately to oppo-<br>sitely branching side-veins                                                                                                                                                                                                          | Central vein with alternately branching side-veins                                                                                                                                                                                                                              | Central vein with alternately branch-<br>ing side-veins                                                                                                                                                                                                                      | Central vein with alternately branch-<br>ing side-veins                                                                                                                                                                                                                   |
|                                                   | Large side-veins anastomose about three quarters of the way to the leaf margin                                                                                                                                                                                                   | Large side-veins anastomose close<br>to the leaf margin                                                                                                                                                                                                                        | Large side-veins anastomose close to the leaf margin                                                                                                                                                                                                                            | Large side-veins anastomose about<br>halfway between the central vein and<br>the leaf margin                                                                                                                                                                                 | Large side-veins anastomose about<br>three quarters of the way to the leaf<br>margin                                                                                                                                                                                      |
|                                                   | Central vein and large side-veins form<br>palpable ridgeson the adaxial and abaxial<br>leaf surfaces                                                                                                                                                                             | Central vein and large side-veins form<br>palpable ridges on the adaxial leaf<br>surface while on the abaxial surface<br>only the central vein is palpable and<br>only towards the base of the leaf                                                                            | Central vein and large side-veins form<br>palpable ridges only on the abaxial<br>leaf surface                                                                                                                                                                                   | Central vein and large side-veins form<br>faintly palpable ridges only on the<br>adaxial leaf surface while the central<br>vein only forms a prominent ridge on<br>the abaxial leaf surface                                                                                  | Only the central vein form palpable<br>ridges only on the abaxial and adaxial<br>leaf surfaces                                                                                                                                                                            |
|                                                   | Areoles contain 1–3 terminal vein endings                                                                                                                                                                                                                                        | Areoles usually contain terminal vein endings (up to 5)                                                                                                                                                                                                                        | Areoles are rich in terminal vein end-<br>ings (up to 10)                                                                                                                                                                                                                       | Areoles contain 1–3 terminal vein endings                                                                                                                                                                                                                                    | Terminal vein endings are absent<br>from areoles or are low in number<br>(1-2)                                                                                                                                                                                            |
| Epidermal cell layer                              | The epidermis consists of a single cell layer<br>The cuticle is well developed on the adaxial and abaxial side                                                                                                                                                                   | The epidermis consists of a single cell<br>layer<br>The cuticle is markedly thicker on the<br>adaxial side                                                                                                                                                                     | The epidermis consists of a single cell<br>layer<br>The cuticle is well developed on the<br>adaxial and abaxial side                                                                                                                                                            | The epidermis consists of a single cell<br>layer<br>The cuticle is well developed on the<br>adaxial and abaxial side                                                                                                                                                         | The epidermis consists of a single cell<br>layer<br>The cuticle is thicker on the adaxial<br>side                                                                                                                                                                         |
| Trichomes                                         | Trichomes are unicellular, non-flattened<br>hairs<br>Trichomes vary in density from very<br>sparse to very dense on both leaf sur-<br>faces and are not always present                                                                                                           | No trichomes                                                                                                                                                                                                                                                                   | Two trichome types: unicellular, uni-<br>seriate, non-flattened hairs and multi-<br>cellular, sessile, flattened, peltate<br>hairs<br>Trichomes common on both leaf sur-<br>faces                                                                                               | No trichomes                                                                                                                                                                                                                                                                 | Multi-cellular, stellate trichomes<br>Trichomes only on the abaxial leaf<br>surface                                                                                                                                                                                       |
| Stomata                                           | Stomata mostly found in the abaxial epi-<br>dermis<br>Guard cells raised above leaf surface<br>Guard cell diameter is a third to half that of<br>subsidiary cells<br>Cuticle does not extend into the stomatal<br>lumen<br>Cuticle forms a horn-like ridge on each<br>guard cell | Stomata mostly found in the abaxial<br>epidermis<br>Guard cells not raised above leaf sur-<br>face<br>Guard cell diameter is about half that<br>of subsidiary cells<br>Cuticle extends into the stomatal<br>lumen<br>Cuticle forms 2 thin, curved ridges on<br>each guard cell | Stomata mostly found in the abaxial<br>epidermis<br>Guard cells not raised above leaf sur-<br>face<br>Guard cell diameter is about a quarter<br>that of subsidiary cells<br>Cuticle extends into the stomatal<br>lumen<br>Cuticle forms a horn-like ridge on<br>each guard cell | Stomata mostly found in the abaxial<br>epidermis<br>Guard cells not raised above leaf sur-<br>face<br>Guard cell diameter is a third to half<br>that of subsidiary cells<br>Cuticle extends into the stomatal<br>lumen<br>Cuticle ridges on guard cells are low<br>or absent | Stomata mostly found in the abaxial<br>epidermis<br>Guard cells raised above leaf surface<br>Guard cell diameter is a third to half<br>that of subsidiary cells<br>Cuticle extends into the stomatal<br>lumen<br>Cuticle forms a thin, curved ridge on<br>each guard cell |
| Hypodermal cell layer                             | One hypodermal cell layer is present<br>under the adaxial epidermis                                                                                                                                                                                                              | No hypodermal cell layers                                                                                                                                                                                                                                                      | No hypodermal cell layers                                                                                                                                                                                                                                                       | No hypodermal cell layers                                                                                                                                                                                                                                                    | No hypodermal cell layers                                                                                                                                                                                                                                                 |
| Palisade parenchyma                               | Only on adaxial side of leaf<br>1–3 cell layers                                                                                                                                                                                                                                  | Only on adaxial side of leaf<br>1–3 cell layers                                                                                                                                                                                                                                | Only on adaxial side of leaf<br>1–3 cell layers                                                                                                                                                                                                                                 | Only on adaxial side of leaf<br>1-2 cell layers                                                                                                                                                                                                                              | On adaxial and abaxial sides<br>1–3 cell layers on adaxial side; 1 layer<br>on abaxial side                                                                                                                                                                               |
| Spongiform parenchyma<br>Bundle sheath extensions | Only on abaxial side of leaf<br>Substomatal chambers present<br>Present only on large veins                                                                                                                                                                                      | Only on abaxial side of leaf<br>Substomatal chambers present<br>Absent only from very small veins                                                                                                                                                                              | Only on abaxial side of leaf<br>Substomatal chambers present<br>Absent only from very small veins                                                                                                                                                                               | Only on abaxial side of leaf<br>Substomatal chambers present<br>Absent only from very small veins                                                                                                                                                                            | Central<br>Substomatal chambers present<br>Absent only from very small veins                                                                                                                                                                                              |

Table 2: Summary of Dichapetalum cymosum morphological structures that are useful for the microscopic identification of leaf fragments.

| Structure(s)             | Description                                                                                                                                                                                                                                                                                                              |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Venation                 | Reticulate<br>Central vein with alternately to oppositely branching side-veins<br>Large side-veins anastomose about three quarters of the way to the leaf margin<br>Central vein and large side-veins form palpable ridges on the adaxial and abaxial leaf surfaces<br>Areoles usually contain 1–3 terminal vein endings |
| Epidermal cell layer     | The epidermis consists of a single cell layer<br>The cuticle is well developed on the adaxial and abaxial side                                                                                                                                                                                                           |
| Trichomes                | Trichomes are unicellular, non-flattened hairs<br>Trichomes vary in density from very sparse to very dense on both leaf surfaces and are not always present                                                                                                                                                              |
| Stomata                  | Guard cells raised above leaf surface<br>Guard cell diameter is a third to half that of subsidiary cells<br>Cuticle does not extend into the stomatal lumen<br>Cuticle forms a horn-like ridge on each guard cell                                                                                                        |
| Hypodermal cell layer    | One hypodermal cell layer is present under the adaxial epidermis                                                                                                                                                                                                                                                         |
| Palisade parenchyma      | Only on adaxial side of leaf<br>1–3 cell layers                                                                                                                                                                                                                                                                          |
| Spongiform parenchyma    | Only on abaxial side of leaf<br>Substomatal chambers present                                                                                                                                                                                                                                                             |
| Bundle sheath extensions | Present only on large veins                                                                                                                                                                                                                                                                                              |

veins form palpable ridges on both the adaxial and abaxial leaf surfaces. Smaller veins anastomose to form networks covering the whole leaf blade. Areoles contain 1–3 terminal vein endings that end blindly in the mesophyll. Except for areoles, the venation characteristics described above can be seen macroscopically on whole leaves and large leaf fragments.



Fig. 5: Schematic representation of the reticulate venation of *Dichapetalum cymosum* leaves.

## Comparison with other reticulatelyveined plant species

Samples of other reticulately-veined plant species that share D. cymosum habitat in the Magaliesberg region of Gauteng, including Burkea africana, Combretum zeyheri, Euclea crispa and Lannea discolor, were compared with D. cymosum. Note that this does not represent a complete list of plants with leaf fragments that may resemble D. cymosum macroscopically, but only those that were found in association with *D. cymosum* at a single locality. All plants with similar growth forms to D. cymosum, such as Parinari capensis Harv., were not included if their leaf venation patterns were not reticulated and leaf fragments could easily be differentiated from that of D. cymosum macroscopically. The results are summarised in Table 1.

## DISCUSSION

*Post mortem* examinations of animals that have died from *D. cymosum* poisoning usually do not reveal any lesions of diagnostic significance<sup>4</sup>. A high-performance liquid chromatographic technique has been developed for the estimation of monofluoroacetate concentrations in rumen contents<sup>8</sup>, but the technique is not performed routinely and is not readily available. The presence of undigested *D. cymosum* leaf fragments in conjunction with circumstantial evidence is often the most practical method used to confirm a diagnosis of poisoning<sup>4</sup>.

The macroscopic characteristics typically used to differentiate between *D. cymosum* and other species with similar growth forms, such as *Parinari capensis* (grysappel), *Pachystigma pygmaeum* (Schltr.) Robyns (gousiektebossie), P. thamnus Robyns (smooth gousiektebossie), Pygmaeothamnus zeyheri (Sond.) Robyns (goorappel), P. chamaedendrum (Kuntze) Robyns (small goorappel) and the shrublet-form of Ochna pulchra Hook. (lekkerbreek) include the leaf attachment pattern, the presence/ absence of stipules, the relative colour of the adaxial and abaxial leaf surfaces, the leaf venation pattern and fruit and flower characteristics<sup>4</sup>. Identification of plant fragments in rumen content, however, requires a different approach because most of these characteristics can be lost after an animal chews and ingests leaves. Growth form is irrelevant when only leaf fragments are available for examination. The venation pattern is often the only recognisable macroscopic feature discernible in leaf fragments found in the gastrointestinal tract. The reticulate venation of *D. cymosum* leaves is not unique and is found in a number of other species that share the same habitat. Leaf fragment identification based on reticulate venation alone is therefore not a completely reliable proof that a poisoned animal had ingested *D. cymosum* leaves.

Microscopic examination of plant samples offers a means of identifying typical histological features<sup>3,9</sup>. It provides access to multiple identification features on relatively small leaf fragments. Histological sections of leaf fragments can be prepared using standardised, routine techniques that are available at many regional laboratories. H & E staining was found to be adequate for the visualisation of diagnostic features using light microscopy. In this study, PAS staining compared with H & E staining resulted in more vivid staining of cell walls, and both methods resulted in satisfactory visualisation of diagnostic features. PAS staining may be useful if increased contrast is desired.

Direct comparison between unknown plant material and known standards, using the same instrumentation, magnification and settings, is a practical an effective approach to plant fragment identification<sup>1</sup>. It would be of practical value to those who might use this diagnostic approach to prepare reference slides containing stained and permanently mounted cross-sections of D. cymosum leaves. Reference slides should represent the morphological variability of the species in the area of interest, such as hairy/smooth leaves and mature/ immature plants. Table 2 represents a summary of morphological characteristics of D. cymosum that are commonly discernible in leaf fragments and that are likely to be useful in the identification of leaf fragments. It would be imprudent to depend on a single characteristic for identification. Combining a number of characteristic histological features significantly reduces the risk of misidentification.

Use of microscopy to identify plant fragments can help to confirm the diagnosis of plant poisoning if the gastrointestinal content is examined shortly after ingestion of plant material. However, extended exposure to the digestive tract secretions and flora may degrade or destroy diagnostic morphological features. It should also be noted that the presence of potentially toxic plant fragments in the digestive tract does not prove the absorption of lethal doses of toxin, and should be interpreted with caution in the absence of supporting circumstantial and symptomatic evidence.

## ACKNOWLEDGEMENTS

We thank Dr J V van Greuning (Botany Department, University of Pretoria) for advice on plant morphology and diagnostic features. We thank Beatrix Gehring for the line drawing showing the venation pattern of a typical *D. cymosum* leaf. We thank the staff of the Pathology Section of the Department of Clinical Sciences, Faculty of Veterinary Science, University of Pretoria, for processing and mounting plant tissue samples.

### REFERENCES

1. Bates L S, Barefield L, Landgraf W, Sample R, Bax B, Jaconis S 1992 *Manual of microscopic analysis of feedstuffs* (3rd edn).The American Association of Feed Microscopists, Champaign, USA

- De Sousa Correia R I, Van Rensburg L 2000 Geographical distribution and local occurrence of *Dichapetalum cymosum* (Hook) Engl. (gifblaar) in Namibia and surrounding areas. In Vermeulen C (ed.) *Agricola* 2000 Nr II. Ministry of Agriculture, Water and Rural Development, Windhoek
- 3. Fahn A 1982 *Plant anatomy* (3rd edn). Pergamon Press, Oxford
- Kellerman T S, Coetzer J A W, Naudé T W, Botha C J 2005 Plant poisonings and mycotoxicoses of livestock in southern Africa (2nd edn). Oxford University Press, Cape Town
- Kellerman T S, Naudé T W, Fourie N 1996 The distribution, diagnoses and estimated economic impact of plant poisonings and mycotoxicoses in South Africa. Onderstepoort Journal of Veterinary Research 63: 65–90
- Liebecq C, Peters R A 1989 The toxicity of fluoroacetate and the tricarboxylic acid cycle. 1949. *Biochimica et Biophysica Acta* 1000: 254–269
- Marais 1944 Monofluoroacetic acid, the toxic principle of 'gifblaar' Dichapetalum cymosum (Hook) Engl. Onderstepoort Journal of Veterinary Science and Animal Industry. 20: 67–73
- 8. Minnaar P P, Swan G E, McCrindle R I, De Beer W H J, Naudé T W 2000 A highperformance liquid chromatographic method for the determination of monofluoroacetate. *Journal of Chromatographic Science* 38(1): 16–20
- 9. Storr G M 1961 Microscopic analysis of faeces, a technique for ascertaining the diet of herbivorous mammals. *Australian Journal of Biological Science* 14: 157–164