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Fifteen crocodiles were randomly divided into three groups of five animals. They represented 
high-infection, medium-infection and low-infection groups of 642 larvae/kg, 414 larvae/kg 
and 134 larvae/kg bodyweight, respectively. The parameters assessed were blood glucose, 
creatine phosphokinase (CPK), lactate dehydrogenase (LDH), aspartate transaminase (AST) 
and alanine transaminase (ALT). The humoral immune response to Trichinella zimbabwensis 
infection was evaluated in all three groups by an indirect ELISA method. The results 
showed deviations from normal parameters of blood glucose, CPK, LDH, AST and ALT 
when compared with reported levels in uninfected reptiles. Contrary to studies involving 
mammals, hypoglycaemia was not observed in the infected groups in this study. Peak values 
of blood glucose were reached on post-infection (PI) Day 49, Day 42 and Day 35 in the high-
infection, medium-infection and low-infection groups, respectively. Peak values of LDH and 
AST were observed on PI Day 56, Day 49 and Day 42 in the high-infection, medium-infection 
and low-infection groups, respectively. Peak values of CPK were observed on Day 35 PI 
in all three groups. Peak ALT values were reached on Day 56 in the high-infection group 
and on Day 28 PI in both the medium-infection and low-infection groups. No correlations 
between the biochemical parameters and infection intensity were observed. Peak antibody 
titres were reached on Day 49 PI in the medium-infection group, and on Day 42 PI in both 
the high-infection and low-infection groups. Infection intensity could not be correlated with 
the magnitude of the humoral immune response or time to sero-conversion. Results from this 
study were in agreement with results reported in mammals infected with other Trichinella 
species and showed that antibody titres could not be detected indefinitely. 

Introduction
Apart from their sylvatic and domestic animal hosts, several Trichinella species infect humans; 
the most important species are Trichinella spiralis and Trichinella britovi (Gottstein et al. 2009). 
Humans become infected through the consumption of raw or undercooked meat from infected 
animals (Dupouy-Camet 2000; Gottstein et al. 2009). The zoonotic importance of Trichinella forms 
the basis for the implementation of measures aimed at the control or eradication of the parasite 
from the human food chain (Gottstein et al. 2009; Mukaratirwa et al. 2013). However, despite 
implementation of control measures, trichinellosis remains a major zoonotic threat in many parts 
of the world (Mukaratirwa et al. 2013; Murrell & Pozio 2011).

Trichinella larvae invade muscle tissue, which causes direct damage to the muscle cell during 
migration of larvae and indirectly by virtue of the inflammatory response of the host (Bruschi 
& Chiumiento 2011). This damage also coincides with increased cell membrane permeability 
and leakage of fluid into the adjacent tissue (Kociecka 2000). This process has been linked to an 
increase of creatine phosphokinase (CPK), lactate dehydrogenase (LDH), aspartate transaminase 
(AST) and alanine transaminase (ALT) in the blood (Kociecka 2000). 

Serum levels of CPK, LDH and AST are considered to be supplementary in the diagnosis of 
Trichinella infections in humans (Gottstein et al. 2009). Jongwutiwes et al. (1998) reported elevated 
levels of CPK, LDH, AST and ALT in human patients infected with Trichinella pseudospiralis. 
Increased serum levels of ALT in pigs infected with T. spiralis have also been previously reported 
(Ribicich et al. 2007). However, elevated serum levels of these enzymes are not necessarily 
indicative of Trichinella infection, as there may be other causes (Koudela & Schanzel 1980; 
Ribicich et al. 2007; Srivastava & Chosdol 2007; Tassi et al. 1995; Wisniewska 1970). Comparisons 
between rats and human patients indicated that an increase in enzyme levels is dependent on the 
individual response from the host rather than being correlated with intensity of infection or clinical 
severity (Wisniewska 1970).
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Normal biochemical values for several crocodile species 
have been previously reported (Lovely et al. 2007; Millan & 
Janmaat 1997; Padilla et al. 2011; Stacy & Whitaker 2000) but 
to the authors’ knowledge, no studies have been conducted 
to investigate the effect of Trichinella infection on the 
biochemical parameters of Nile crocodiles.

Trichinella infection has also been reported to influence blood 
glucose levels, and hypoglycaemia has been reported in 
humans (Busila et al. 1968), mice (Nishina & Suzuki 2002; Wu 
et al. 2009) and dogs (Reina et al. 1989) infected with Trichinella 
species. The decrease in blood glucose has been attributed 
to the depletion of blood glucose by the parasite larvae 
(Wu et al. 2009). In a study involving mice infected with 
T. spiralis, hypoglycaemia was observed at 10 days post 
infection (PI) (Nishina & Suzuki 2002). 

The cuticle of nematodes contains immune-specific 
antigens targeted by the host immune system (Phillip 
et al. 1981). Larvae and adults of the genus Trichinella are 
antigenically heterogeneous (Fabre et al. 2009). Enzyme 
linked immunosorbent assay (ELISA) is a commonly used 
method to measure the humoral immune response of the 
host to the antigen. The method relies on the metabolic 
excretory/secretory antigens (ESA) comprising of related 
glycoproteins that are released by the larvae (Gottstein et al. 
2009). An important carbohydrate epitope, tyvelose, which 
is responsible for the induction of the humoral immune 
response, is situated on the TSL-1 antigen contained within 
stichocyte cells of the cuticle; a synthetic variant of this 
carbohydrate is used in the ELISA (Gottstein et al. 2009). 
Although highly specific, the use of synthetic tyvelose 
antigen in the ELISA is less sensitive than ESA (Gottstein 
et al. 2009).

Information is scant about the antibody response of the host 
against muscle stages of the parasite, but a mixed isotype response 
of Immunoglobulin G (IgG) 1, IgG2 and IgE has been reported 
in chronic infections, with IgG1 being the most dominant (Fabre 
et al. 2009). The use of serological tests as diagnostic tools 
in animal trichinellosis has previously been evaluated. 
Enzyme immunoassay tests (Gamble et al. 1996; Soule et al. 
1989) and indirect immunofluorescence assays (Reina et al. 
1996; Soule et al. 1989) have been conducted in goats and 
horses. Immunoassays were reported to be useful in horses 
but the study animals were all euthanased at 12 weeks 
post infection (Gamble et al. 1996), thus the persistence of 
antibodies beyond this time frame was never investigated. 
Similar results were also obtained in a study involving 
goats (Reina et al. 1996). In a study by Pozio et al. (2002), the 
immune response of horses against T. spiralis and Trichinella 
murrelli was evaluated for four-to-five months following 
infection using both ELISA and Western Blot techniques. In 
most cases, specific IgG was detectable only between three 
to seven weeks PI and maximum persistence of antibodies 
was recorded at 33 weeks PI in one horse infected with 20 000 
T. murrelli larvae. Western Blot analysis and ELISA were also 
developed for pigs and, although relatively high specificity 
and sensitivity of the tests were reported (Nöckler et al. 

2009), samples were not collected over extended periods to 
evaluate the persistence of antibodies. The aforementioned 
studies showed the practical application of these techniques 
to be limited. Specific antibodies against Trichinella do not 
persist indefinitely and can only be detected for limited 
periods following infection. Since Trichinella zimbabwensis 
is a non-encapsulated species, it is expected that the host 
immune response is stronger and more persistent due to the 
direct contact between the parasite larvae and host tissue 
(Huchzermeyer, F.W., pers. comm., 2008). An experimental 
study to determine the feasibility of the use of ELISA for the 
detection of T. zimbabwensis infection in crocodiles indicated 
that antibody titres decreased and eventually disappeared 
altogether (Ludovisi et al. 2013). 

The objective of this study was to evaluate the effect of 
T. zimbabwensis infection intensity on the levels of blood 
glucose, AST, ALT, CPK and LDH and on the humoral 
immune response of experimentally infected crocodiles. 

Materials and methods 
Source of study animals
Fifteen 7-year-old Nile crocodiles (13 males and 2 females) 
within the size range of 1.35 m − 1.8 m in length were 
used in the present study. The crocodiles represented a 
group of animals not intended for commercial purposes 
and sourced from a farmed population with no history of 
T. zimbabwensis infection prior to commencement of the 
study. The animals were captured on the Wilderness Roads 
farm in Low’s Creek, Mpumalanga Province, South Africa. 
They were immobilised with 0.4 mL Gallamine triethiodide 
(40 mg/mL) (Kyron, Johannesburg, South Africa), which was 
injected intramuscularly on the lateral aspect of the tail base 
of each animal before being transported to the experimental 
housing.

Pre-trial data collected from the animals included weight, 
sex and length of the animals. Clipping the horizontal scutes 
following a specific pattern on the tail identified each animal. 
For the high-infection group, both the left and right scutes 
were clipped in sequence according to the number assigned 
to the animal. For the low-infection and medium-infection 
groups, only the scutes on the left or right were clipped, 
respectively. The experiment was carried out from January 
2012 to March 2012, when climatic conditions ensured good 
feeding and optimal physical condition of the animals.

Animal husbandry and feeding
Animal husbandry and feeding practices for the study 
animals were followed, as described by the South African 
National Standard for crocodiles in captivity SANS 631:2009 
(SABS Standards Division 2009).

The study animals were housed on a smallholding belonging 
to the Mpumalanga Tourism and Parks Agency (MTPA) on 
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the outskirts of Nelspruit, Mpumalanga province, South 
Africa. A fenced enclosure (10 m x 5 m) was constructed 
using 65 mm diamond mesh fencing, with a single-access 
gate. The enclosure allowed for a temperature gradient in 
the water to provide optimal thermoregulation (La Grange 
& Mukaratirwa 2014). During capture and sampling the 
pond was drained weekly and replenished with fresh water. 
Animals were fed with coarsely minced commercially 
bred chicken carcasses enriched with vitamin and mineral 
components (Feedmix, Johannesburg, South Africa) that 
were supplemented as 2.50 kg and 1.25 kg, respectively, in 
1000 kg of wet ration. 

The study animals were fed approximately 10 kg of food 
two to three times a week; no food was offered on days 
immediately prior to testing.

Source and preparation of infective material
As part of a previous study, T. zimbabwensis-infected meat 
was sourced from a crocodile experimentally infected with 
T. zimbabwensis (Ludovisi et al. 2013). Muscle tissue was 
collected from various sites, minced and thoroughly mixed 
using a ladle. One hundred grams of the homogenised sample 
was subjected to artificial digestion according to the method of 
Nöckler and Kapel (2007) and infection level was determined 
to be 30 larvae per gram (LPG) of the homogenised sample. 
Infective material for each individual animal was calculated 
and separately packaged and refrigerated at 4 °C until the 
day of infection.

Infection of study animals
The animals were manually restrained and the infective 
dose was administered through a stomach tube. The high-
infection group of crocodiles were infected with an average 
of 642 larvae/kg of bodyweight, the medium-infection 
group with an average of 414 larvae/kg of bodyweight and 
the low-infection group with an average of 134 larvae/kg 
of bodyweight. The animals were continuously monitored 
for at least 30 min following infection for side effects or 
regurgitation of infective material. 

Collection of blood and sera
Blood was collected from each of the animals weekly from 
the date of infection (Day 0) until eight- weeks post infection 
(Day 56) to test for blood glucose and levels of CPK, LDH, 
ALT and AST. A 10 mL syringe and a 21-gauge needle 
were used to collect blood from the supra-vertebral sinus; 
approximately 8 mL blood was collected weekly from each 
animal. In order to separate the serum, blood was allowed to 
clot and the sample was centrifuged at 10 000 rpm for 15 min.

Preservation of samples
For the detection of antibodies, 2 mL serum from each 
animal was transferred to sterile cryotubes with screw caps 
and preserved in 0.01% merthiolate solution. The preserved 
samples were stored at 4 °C until completion of the trial. 

The remaining sera were frozen at -18 °C and used for the 
enzyme assays. 

Testing of samples
Blood glucose was tested immediately after collection using 
an Accu-Chek® Active (Roche Diagnostics, Indianapolis, 
USA) glucometer to minimise the impact of stress (Smith & 
Marais 2004). 

Sera preserved in 0.01% merthiolate were referred to the 
International Trichinella Reference Centre in Rome, Italy, for 
testing according to procedure based on Ludovisi et al. (2013).

Sera frozen at -18 °C were submitted to the biomedical 
research laboratory at the University of KwaZulu-Natal, 
Westville campus, Durban, South Africa, for testing. The 
samples were tested for LDH, ALT, AST and CPK enzyme 
levels. An automated chemistry analyser, Labmax Plenno 
(Lagoa Santa, Costa Brava, Brazil) was used for the analyses 
in accordance with manufacturer’s recommendations.

Data analysis
Every week, mean blood glucose and serum concentrations of 
CPK, LDH, ALT and AST were determined for each group of 
animals over the trial period. Mean serum concentrations of 
biochemical parameters on Day 0 of the trial were compared, 
where possible, with normal reference ranges reported for 
Nile crocodiles (Botha 2010; Huchzermeyer 2003; Lovely 
et al. 2007; Padilla et al. 2011). Alternatively, where normal 
reference ranges for Nile crocodiles could not be found, 
comparisons were made with reference ranges reported for 
other crocodilian species (Diethelm & Stein 2006; Millan 
& Janmaat 1997; Padilla et al. 2011) (Table 1). Values from 
Day 7 PI were expressed as a percentage of the normal values 
recorded on Day 0 and calculated as follows:

Pv = (Iv/D0)*100                                                                [Eqn 1]

Where Pv is the new percentage value, Iv is the initial value 
on the specific day and D0 represents the value on Day 0. Data 
were log transformed (log10[x+1]) and analysis of variance 
(IBM SPSS Statistics 19) was used to compare results from 
the different groups. Non-parametric, bivariate correlation 
(Spearman’s rho) analyses (IBM SPSS Statistics 19) were 
conducted in order to determine relationships between 
biochemical parameters and infection dose.

Results
Blood glucose 
The mean concentration of blood glucose for the three 
experimental groups is shown in Table 2. In the high-
infection and medium-infection groups, initial peaks in 
blood glucose values were observed on Day 14 PI and 
Day 7 PI, respectively. This was followed by a slight decrease 
the following week. Analysis of variance revealed significant 
differences in blood glucose concentrations on Day 28 PI 
between the high-infection and low-infection groups and 
between the medium-infection and low-infection groups 
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(p < 0.05). No correlation was observed between blood 
glucose and infection dose. 

Alanine transaminase
Mean values of ALT for the three experimental groups 
are shown in Table 3. The highest increase of ALT was 
observed in the high-infection group on Day 49 PI 

and Day 56 PI, and it was 42% higher than the initial 
concentrations on Day 0. Increases in ALT in the medium-
infection and low-infection groups were less pronounced 
and reached peak values of 8% and 11% higher than Day 0 
at Day 28 PI. Analysis of variance showed no significant 
difference (p > 0.05) in the increases in ALT concentrations 
among the groups. However, mean ALT concentrations 

TABLE 1: Biochemical ranges of Crocodylus niloticus and reference ranges reported in other crocodilian species.
 Species Glucose Alanine 

transaminase
(ALT)

Aspartate 
transaminase 
(AST)

Creatine 
phosphokinase 
(CPK)

Lactate 
dehydrogenase 
(LDH)

Reference

Crocodylus niloticus
 
 
 

3.80 mmol/L – 7.50 mmol/L 8.00–59.00 16.0–49.0 61.4–1893.5 638.0–3173.0 Current study

81.60 mg/dL - -  - - Padilla et al. (2011); 
Huchzermeyer 2003

3.30 mmol/L – 4.80 mmol/L 15.00–69.00 14.0–211.0 - - Lovely et al. (2007)

3.87 mmol/L – 5.68  mmol/L 13.00–30.00 24.0–47.0 - - Botha (2010)

Alligator mississippiensis
 

92.00 mg/dL 46.05a,b 223.5b - - Padilla et al. (2011); 
Huchzermeyer (2003)

0.00 mg/dL – 198.00 mg/dL 0.00–154.00 0.0–700.0 0.0–8620.0 0.0–2000.0 Diethelm and Stein (2005)

74.00 mg/dL - - - - Stacey and Whittaker (2000)

Paleosuchus palpebrosus 29.00 mg/dL – 187.00 mg/dL 24.00–93.00 42.0–221.0 37.0–9890.0 80.0–6615.0 Diethelm and Stein (2005)

Crocodylus moreletti
 

64.25 mg/dL – 74.85 mg/dL 16.68–23.72 - - - Padilla et al. (2011)

52.95 mg/dL - - - - Huchzermeyer (2003)

Crocodylus porosus
 
 

4.50 mmol/dL – 12.10 mmol/dLc,d,e 11.00–51.00c,d 23.0–157.0c - - Millan and Janmaat (1997); 
Padilla et al. (2011)

4.80 mmol/L – 11.99 mmol/L 12.00–50.00 23.0–148.0 - - Richardson et al. (2002)

81.00 mg/dL – 218.00 mg/dL 11.00–51.00 23.0–157.0 - - Stacey and Whittaker (2000)

Caiman latirostris 81.82 mg/dL - -  - - Huchzermeyer (2003)

Crocodylus palustris
 

55.00 mg/dL – 110.00 mg/dL - - - - Huchzermeyer (2003)

48.00 mg/dL – 110.00 mg/dL 28.00–97.00 23.0–70.0 - - Stacey and Whittaker (2000)

Tomistoma schlegelii 75.30 mg/dL - -  -  426.2 Huchzermeyer (2003)

Crocodylus mindorensis 60.00 mg/dL – 168.00 mg/dL - -  - - Stacey and Whittaker (2000)

Crocodylus acutus 101.00 mg/dL - - - -  Stacey and Whittaker (2000)
a, Padilla et al. (2011); b, Huchzermeyer (2003); c, Millan and Janmaat (1997); d, Padilla et al. (2011); e, Huchzermeyer (2003).
Note: Please see the full reference list of the article, La Grange, L.J. & Mukaratirwa, S., 2014, ‘Assessment of selected biochemical parameters and humoral immune response of Nile crocodiles 
(Crocodylus niloticus) experimentally infected with Trichinella zimbabwensis’, Journal of the South African Veterinary Association 85(1), Art. #1085, 10 pages. http://dx.doi.org/10.4102/jsava.
v85i1.1085

TABLE 2: Mean blood glucose levels (mmol/L) in Nile crocodiles (Crocodylus niloticus) experimentally infected with Trichinella zimbabwensis.
Infected groups
 

Blood 
glucose levels

Days post infection

Day 0 Day 7 Day 14 Day 21 Day 28 Day 35 Day 42 Day 49 Day 56

High infection†
(643 larvae/kg bodyweight)

Mean ± SE 4.62 ± 0.33 6.46 ± 0.98 7.24 ± 1.17 4.98 ± 0.37 5.30 ± 0.66 7.54 ± 1.85 8.32 ± 1.09 8.40 ± 1.00 6.76 ± 0.75

Range 3.80–5.50 3.70–9.70 5.20–11.30 4.20–6.30 3.40–7.30 4.70–14.70 6.80–12.60 4.90–11.10 5.40–10.3

Medium infection†
(414 larvae/kg bodyweight)

Mean ± SE 5.32 ± 0.38 7.48 ± 0.67 5.86 ± 0.53 6.28 ± 0.34 5.24 ± 0.49 7.44 ± 0.27 8.98 ± 0.44 6.70 ± 0.31 8.72 ± 0.76

Range 4.70–6.80 5.50–9.40 4.60–7.80 5.40–7.40 3.80–6.80 6.90–8.40 8.00–10.30 5.50–7.30 6.20–10.4

Low infection†
(134 larvae/kg bodyweight)

Mean ± SE 6.06 ± 0.66 5.68 ± 0.57 5.88 ± 0.31 6.42 ± 0.70 8.70 ± 0.30 9.80 ± 1.18 7.34 ± 0.46 9.70 ± 0.99 6.66 ± 0.46

Range 4.60–7.50 4.40–7.50 4.80–6.70 5.30–9.10 7.80–9.30 5.20–11.70 6.20–8.40 6.90–12.70 5.50–8.20

†, n = 5.

TABLE 3: Mean alanine transaminase levels (IU/L) of Nile crocodiles (Crocodylus niloticus) experimentally infected with Trichinella zimbabwensis.
Infected groups
 

Alanine 
transaminase 
levels

Days post infection

Day 0 Day 7 Day 14 Day 21 Day 28 Day 35 Day 42 Day 49 Day 56

High infection†
(642 larvae/kg bodyweight)

Mean ± SE 11.67 ± 2.33 21.00 ± 3.24 21.80 ± 7.11 28.40 ± 5.52 36.20 ± 4.12 36.20 ± 5.15 30.40 ± 11.12 38.50 ± 14.05 64.60 ± 32.30

Range 8.00–16.00 14.00–32.00 5.20–11.30 4.20–6.30 3.40–7.30 4.70–14.70 6.80–12.60 4.90–11.1 5.40–10.30

Medium infection†
(414 larvae/kg bodyweight)

Mean ± SE 35.50 ± 1.85 38.25 ± 4.85 40.80 ± 4.60 42.40 ± 4.80 47.75 ± 6.13 38.40 ± 4.25 47.00 ± 4.09 40.60 ± 3.43 43.20 ± 5.28

Range 32.00–40.00 25.00–46.00 25.00–50.0 28.00–54.0 39.00–65.0 27.00–51.00 36.00–61.00 28.00–48.0 25.00–58.00

Low infection†
(134 larvae/kg bodyweight)

Mean ± SE 33.40 ± 6.82 37.40 ± 7.92 37.60 ± 4.79 44.20 ± 7.15 47.20 ± 4.42 43.60 ± 7.65 44.20 ± 6.02 46.80 ± 10.33 38.80 ± 8.75

Range 23.00–59.00 28.00–69.00 22.00–48.00 23.00–68.00 32.00–57.00 14.00–57.00 25.00–55.00 8.00–69.0 12.00–59.00

†, n = 5.
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were correlated with mean blood glucose concentrations 
in the high infection group (R2 = 0.9, p < 0.05).

Aspartate transaminase 
Mean values of AST for all three experimental groups 
are shown in Table 4. Maximum values were reached on 
Day 56 PI in the high-infection group. In the medium-infection 
group, AST values peaked on Day 49 PI and maximum 
values of AST were reached in the low-infection group on 
Day 42 PI. On Day 42 PI, the percentage increase of AST in 
the low-infection group was significantly higher than that 
observed in the medium-infection group (p < 0.05). Analysis 
of variance showed mean AST values in the low-infection 
group to be significantly higher on Day 14 PI and Day 42 PI 
(p < 0.05) compared with the high-infection group. 

Creatine phosphokinase
The mean values of CPK for all three experimental groups 
are shown in Table 5. The low-infection group showed 
significantly lower values of CPK from Day 0 compared with 
the high-infection and medium-infection groups. Analysis 
of variance showed significant differences in changes of 
mean CPK values between the high-infection and low-
infection groups from Day 0 until Day 14 of the trial. The 
percentage increases in CPK values in the low-infection 
group was significantly higher (p < 0.05). Mean CPK values 

were significantly increased in the low-infection group 
compared with the medium-infection group on Day 7 PI, 
Day 42 PI, and Day 56 PI (p < 0.05). Similarly, CPK in the 
low-infection group increased to significantly higher levels 
than those recorded for the high-infection group on Day 42 
PI and Day 56 PI (p < 0.05). The mean increase in CPK value 
was also significantly higher in the medium-infection group 
compared with the high-infection and low-infection groups 
on Day 28 PI (p < 0.05). Mean CPK values were significantly 
correlated with both initial infection dose and mean blood 
glucose (R2 = 0.9, p < 0.05) in the high-infection group, but a 
significantly negative correlation was observed with overall 
infection dose in this group (R2 = -0.9, p < 0.05). Mean CPK 
was negatively correlated with mean blood glucose in the 
medium-infection group (R2 = -0.9, p < 0.05). No significant 
correlation could be established between infection dose and 
peak CPK values.

Lactate dehydrogenase
The values of LDH for all three experimental groups are 
shown in Table 6. No correlation could be established 
between peak LDH values and infection dose. Mean 
increase in LDH was significantly higher in the low-
infection group on Day 28 PI and Day 35 PI compared with 
the medium-infection group (p < 0.05). Mean increases in 
LDH values were significantly higher in the low-infection 
group compared to the high-infection group on Day 35 PI 

TABLE 4: Mean aspartate transaminase levels (IU/L) of Nile crocodiles (Crocodylus niloticus) experimentally infected with Trichinella zimbabwensis.
Infected groups
 

Alanine 
transaminase 
levels

Days post infection
Day 0 Day 7 Day 14 Day 21 Day 28 Day 35 Day 42 Day 49 Day 56

High infection†
(642 larvae/kg bodyweight)
 

Mean ± SE 21.75 ± 4.13 18.80 ± 1.28 20.00 ± 0.82 19.00 ± 2.53 20.80 ± 1.11 26.80 ± 5.44 18.75 ± 5.76 21.00 ± 1.92 53.20 ± 3.50
Range 16.00–34.00 15.00–22.00 18.00–22.00 14.00–26.00 17.00–24.00 9.00–42.00 6.00–32.00 14.00–25.00 44.00–65.00

Medium infection†
(414 larvae/kg bodyweight)
 

Mean ± SE 38.50 ± 4.70 29.75 ± 7.55 25.00 ± 2.59 26.40 ± 1.03 29.50 ± 3.86 28.20 ± 4.04 28.20 ± 2.94 74.00 ± 16.71 31.40 ± 2.58
Range 27.00–48.00 15.00–48.00 19.00–33.00 24.00–30.00 21.00–37.00 18.00–37.00 19.00–34.00 20.00–120.00 26.00–39.00

Low infection†
(134 larvae/kg bodyweight)

Mean ± SE 34.80 ± 4.07 31.40 ± 4.88 35.80 ± 3.34 30.60 ± 3.49 34.80 ± 3.87 39.40 ± 4.83 57.80 ± 8.09 33.60 ± 7.59 24.20 ± 4.09
Range 26.00–49.00 13.00–41.00 28.00–47.00 23.00–68.00 22.00–40.00 27.00–55.00 38.00–80.00 6.00–52.00 12.00–33.00

†, n = 5.

TABLE 5: Mean creatine phosphokinase levels (IU/L) of Nile crocodiles (Crocodylus niloticus) experimentally infected with Trichinella zimbabwensis.
Infected groups Creatine 

phosphokinase 
levels

Days post infection
Day 0 Day 7 Day 14 Day 21 Day 28 Day 35 Day 42 Day 49 Day 56

High infection† 
(642 larvae/kg bodyweight)

Mean ± SE 698 ± 145 770 ± 51 872 ± 268 599 ± 185 1507 ± 770 3343 ± 1205 2252 ± 522 1547 ± 874 1884 ± 673
Range 405–1099 577–854 454–1898 115–1084 269–4534 695–5064 1256–3652 414–5026 524–4410

Medium infection† 
(414 larvae/kg bodyweight)

Mean ± SE 1209 ± 230 1042 ± 129 802 ± 115 896 ± 201 802 ± 75 3377 ± 1029 1843 ± 539 1681 ± 701 998 ± 187
Range 448–1294 691–1384 541–1225 391–1449 592–1001 1701–6941 633–3684 690–4448 567–1684

Low infection† 
(134 larvae/kg bodyweight)

Mean ± SE 93 ± 12 136 ± 41 148 ± 37 162 ± 34 187 ± 29 722 ± 128 297 ± 57 112 ± 20 63 ± 8
Range 61–123 54–254 75–275 86–271 148–302 266–1016 194–495 55–166 41–86

†, n = 5.

TABLE 6: Mean lactate dehydrogenase levels (IU/L) of Nile crocodiles (Crocodylus niloticus) experimentally infected with Trichinella zimbabwensis.
Infection
 

Lactate 
dehydrogenase 
levels

Days post infection
Day 0 Day 7 Day 14 Day 21 Day 28 Day 35 Day 42 Day 49 Day 56

High infection†
(642 larvae/kg bodyweight)

Mean ± SE 827 ± 137 876 ± 184 1256 ± 271 764 ± 92 841 ± 55 1637 ± 318 1521 ± 367 1960 ± 375 4281 ± 240
Range 563–1348 288–1393 641–2180 455–991 752–1049 1181–2901 991–2959 1045–3021 3811–5194

Medium infection† 
(414 larvae/kg bodyweight)

Mean ± SE 1140 ± 320 1742 ± 321 1101 ± 157 1246 ± 324 2642 ± 704 1849 ± 392 2532 ± 469 5743 ± 1466 1395 ± 290
Range 724–2413 1011–2855 489–1360 409–2357 1033–4940 1156–3216 1223–3674 1004–9726 868–2527

Low infection†
(134 larvae/kg bodyweight)

Mean ± SE 1592 ± 476 905 ± 158 944 ± 86 2179 ± 481 1729 ± 377 2416 ± 533 4853 ± 750 1532 ± 299 533 ± 191
Range 638–3173 344–1243 760–1179 1069–3737 915–2726 544–3793 3335–7403 704–2313 275–765

†, n = 5.
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(p < 0.05). Mean LDH concentrations in the low-infection 
group reached significantly higher values on Day 21 PI and 
Day 42 PI compared with the high-infection group (p < 0.05). 
Mean increase in values of LDH was significantly higher 
in the high-infection group on Day 56 PI compared with 
the medium-infection and low-infection groups (p < 0.05). 
LDH values were also significantly higher in the medium-
infection group compared with the high-infection group on 
Day 28 PI and Day 49 PI (p < 0.05). Mean LDH values were 
also significantly higher in the medium-infection group on 
Day 56 PI compared with the low-infection group (p < 0.05). 
Mean LDH values were negatively correlated with blood 
glucose in the medium- infection group (R2 = -0.9, p < 0.05). A 
significant correlation was also observed between mean LDH 
concentrations and infection dose in the low-infection group 
(R2 = 0.9, p < 0.05).

Indirect enzyme immnunosorbent assay
Sero-conversion was observed in all of the experimental 
animals. Analysis of variance showed no significant 
differences in the titre levels between the three groups, 
despite the fact that mean optical density (OD) values in 
the high-infection group were lower compared with the 
medium- infection group. Mean OD values were also lower 
in the medium-infection group compared with the low-
infection group. No significant correlation between infection 
dose and magnitude of the humoral immune response could 
be established. Peak antibody titres were reached at Day 42 PI 
in both the high-infection and low-infection groups, whereas 
the medium-infection group reached its highest value on 
Day 49 PI. Analysis of variance, however, showed significant 
differences between the groups on Day 7 PI, Day 21 PI and 
Day 42 PI. On Day 7, OD values were significantly lower 
in the high-infection group (p < 0.05) compared with the 
medium-infection and low-infection groups. On Day 21, OD 
values in both the high-infection and low-infection groups 
were significantly lower than in the medium-infection group 
(p < 0.05). On Day 42, OD values in the low-infection group 
were significantly higher compared with the high-infection 
group. However, no significant correlation could be established 
between infection dose and time to sero-conversion.

Ethical consideration 
Ethical approval for the study was obtained through the 
Animal Ethics Research Committee of the University of 

KwaZulu-Natal (reference number 035/12/Animal). Where 
applicable, ARRIVE guidelines for reporting in vivo animal 
experiments (Kilkenny et al. 2010) have been adhered to.

Discussion
Mean blood glucose ranges of the experimental crocodiles 
on Day 0 compared favourably with normal reference ranges 
reported for Nile crocodiles (Botha 2010; Huchzermeyer 
2003; Lovely et al. 2007; Padilla et al. 2011). Only four animals 
in this study showed blood glucose values higher than those 
reported by previous authors, but they still fell within the 
ranges reported for estuarine crocodiles Crocodylus porosus 
(Millan & Janmaat 1997; Padilla et al. 2011).

Wu et al. (2009) reported an initial drop in blood glucose 
levels between Day 8 PI and Day 28 PI in mice experimentally 
infected with T. pseudospiralis and T. spiralis. Interestingly, the 
results reported by Wu et al. (2009) showed that the lowest 
levels of blood glucose in mice were reached at Day 13 PI 
and Day 18 PI for T. spiralis and T. pseudospiralis, respectively; 
T. pseudospiralis-infected mice took longer to return to 
normal. Similarly, mice infected with T. spiralis in other 
studies showed hypoglycaemia at Day 10 PI (Nishina & 
Suzuki 2002; Nishina et al. 2004). The initial decrease in 
blood glucose observed on Day 7 PI in the low-infection 
group in the present study is consistent with results 
obtained from mice experimentally infected with T. spiralis 
(Nishina & Suzuki 2002). In contrast, blood glucose levels 
increased between Day 0 PI and Day 7 PI in the high-
infection group and between Day 0 PI and Day 14 PI in 
the medium-infection group in the present study. This 
suggests that the level or intensity of infection has an effect 
on blood glucose levels. Modulation of the insulin pathway 
by the parasite is considered to cause hypoglycaemia, and 
blood glucose levels correspond to larval growth (Wu et al. 
2009). Wu et al. (2009) additionally reported that minimum 
blood glucose levels in mice experimentally infected with 
T. spiralis and T. pseudospiralis were reached on Day 13 PI 
and Day 18 PI, respectively; in the case of the latter, recovery 
time from hypoglycaemia was longer. These differences 
suggest that parasite-specific mechanisms are responsible. 
However, the initial rise in blood glucose levels observed 
in the high-infection and medium-infection groups in this 
study cannot be explained. In the study by Wu et al. (2009), 
blood glucose levels of the infected mice steadily increased 
following their initial drop and reached almost normal levels 
by Day 48 PI; they rarely reached levels above normal. In this 

TABLE 7: Mean change* in anti-Trichinella IgG in sera of Nile crocodiles (Crocodylus niloticus) experimentally infected with Trichinella zimbabwensis.
Infected Groups
 

Immunoglobulin G Days post infection
Day 0 Day 7 Day 14 Day 21 Day 28 Day 35 Day 42 Day 49 Day 56

High infection†
(642 larvae/kg bodyweight)

Mean ± SE 0.79 ± 0.46 0.56 ± 0.06 0.67 ± 0.06 0.52 ± 0.04 1.68‡ ± 0.34 1.14 ± 0.40 1.97‡ ± 0.44 0.90 ± 0.21 1.95‡ ± 0.40
Range 0.67–0.93 0.37–0.69 0.45–0.78 0.52–0.65 0.84–2.68 0.50–2.62 0.86–3.34 0.61–1.73 1.11–3.25

Medium infection†
(414 larvae/kg bodyweight)

Mean ± SE 0.91 ± 0.18 0.90 ± 0.09 0.87 ± 0.08 1.42‡ ± 0.19 1.68‡ ± 0.28 1.40‡ ± 0.28 1.21 ± 0.20 2.37‡ ± 0.46 1.87‡ ± 0.36
Range 0.20–1.13 0.60–1.15 0.57–0.98 0.94–2.05 1.08–3.07 0.57–2.27 0.78–1.98 0.82–3.15 0.72–2.95

Low infection†
(134 larvae/kg bodyweight)

Mean ± SE 0.89 ± 0.04 0.94 ± 0.11 0.92 ± 0.15 0.81 ± 0.11 1.62‡ ± 0.38 2.29‡ ± 0.47 2.64‡ ± 0.30 1.41‡ ± 0.50 1.59‡ ± 0.22
Range 0.73–0.97 0.54–1.22 0.63–1.37 0.53–1.14 0.96–2.94 0.94–3.35 1.60–3.47 0.67–3.32 1.22–2.41

*, Values displayed represent optical density values at 450 nm.
†, n = 5; ‡, Values > 1.4 are considered positive.
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study, however, blood glucose levels were maintained above 
the initial levels recorded on Day 0 and never decreased 
to normal levels during the experimental period. This 
phenomenon cannot be explained, but it could be speculated 
that crocodiles possess physiological adaptations that 
allow them to up-regulate blood glucose concentrations in 
accordance with the existing demand. 

Dolphins have been reported to switch between a normal 
and hyperglycaemic state when presented with daily 
feeding and fasting routines (Venn-Watson et al. 2011). This 
adaptation is necessary to enable these animals to maintain 
high blood glucose levels, as demanded by their physiology 
(Venn-Watson et al. 2011). The elevated blood glucose levels 
observed in this study may also have been influenced by 
stress associated with capture and restraint (Smith & Marais 
2004), but the observed variation in responses between the 
experimental groups suggests that the effects of infection 
superseded those caused by other stressors. However, the 
increase in blood glucose levels observed in the medium-
infection and high-infection groups between Day 28 PI and 
Day 42 PI, and Day 21 PI and Day 35 PI in the low-infection 
group, may be due to the arrival and infiltration of new-
born larvae in the muscle tissue. In this study, minimum 
and maximum blood glucose levels were not reached at 
the same time in the three groups, but were marked by 
a one-week delay between each group; the low-infection 
group reached the high levels first. Studies with mice and 
reptiles infected with T. pseudospiralis and T. zimbabwensis, 
respectively, showed larvae of these two species to be larger 
in poikilotherms than in mammalian hosts (Pozio et al. 
2004). This suggests that the metabolic rate of the host may 
influence larval growth (Pozio et al. 2004). 

If the growth rate and, subsequently, the metabolic rate of 
T. zimbabwensis can be altered as a result of variation in host 
metabolism, similar alterations may be caused in accordance 
with the availability of nutrients, which may explain the 
delays observed between the experimental groups of this 
study. Another hypothesis could be that this strategy is 
employed by the parasite to prevent the sudden release of 
large numbers of larvae into the host circulation. Large larval 
burdens in the blood circulation could potentially restrict 
blood flow in vital organs or produce acute anaphylaxis 
causing host fatality, which ultimately is detrimental to 
survival of the parasite.

Mean ALT of the experimental crocodiles compared 
favourably on Day 0, with normal reference ranges reported 
for Nile crocodiles (Botha 2010; Lovely et al. 2007). Only 
one animal in this study displayed ALT concentrations 
lower than those reported by previous authors, but still fell 
within the range reported for American alligators (Alligator 
mississippiensis) (Diethelm & Stein 2006). Increased levels 
of ALT are normally more indicative of liver disease and, 
according to Srivastava and Chosdol (2007), increase in the 
levels of this enzyme is rarely noted in other cases.

Peak values of ALT were not reached simultaneously in 
the three groups. Increases in ALT concentrations were less 

pronounced than those of CPK and LDH, suggesting that 
ALT is less sensitive to the effects of the parasite on host tissue 
and that significant increases in this enzyme may only occur 
in cases of high infection intensity that result in severe tissue 
damage. This supports the specific nature of this enzyme 
as an indicator of liver disease rather than muscle damage. 
Assessment of the individual crocodile results additionally 
showed high variability within the three groups; this further 
suggests that the effect of individual host physiology on ALT 
concentrations supersedes the effect of parasite invasion, 
especially in lower level infections, further supporting 
the less sensitive nature of this enzyme compared to CPK 
and LDH.

Mean AST values of the experimental crocodiles on Day 0 
were comparable with normal reference ranges reported for 
Nile crocodiles (Botha 2010; Lovely et al. 2007). Peak AST 
concentrations did not appear to coincide with the arrival of 
newborn larvae in muscles but instead reached peak values 
much later during the course of infection, which coincided 
with the response observed in LDH. In contrast to ALT, the 
response of individual crocodiles in the different groups 
was also more uniform and this suggests that this enzyme 
is more specific in its response to the parasitic effects of 
T. zimbabwensis than ALT, but less sensitive than CPK and 
LDH. This is in agreement with reports of increased AST 
concentrations associated with muscle injuries (Srivastava 
& Chosdol 2007). Normally, AST levels are higher than ALT 
and the ratio of AST:ALT are reported to be > 1 (Srivastava & 
Chosdol 2007). Normal values of these enzymes, as recorded 
for the experimental crocodiles in this study, support this; 
AST values were on average higher (31.9 IU/L) than ALT 
(28.7 IU/L). Srivastava and Chosdol (2007) also reported that 
AST:ALT ratios may change to ≤ 1 in cases where tissue 
damage is severe. This was also supported by the results of 
this study, as mean ALT concentrations (38.8 IU/L) exceeded 
those of AST (31.8 IU/L) over the course of the experiment.

No reference ranges for CPK for Nile crocodiles have been 
reported to date. However, mean CPK values of animals in 
this study on Day 0 were comparable with the ranges reported 
for American alligators and Dwarf caimans (Paleosuchus 
palpebrosus) (Diethelm & Stein 2006).

The single peak increase in CPK concentrations in the 
low-infection group on Day 35 PI may correspond with 
the arrival of larvae and subsequent invasion of muscle 
tissue. It further suggests that the newborn larvae reached 
their respective sites of predilection simultaneously, which 
resulted in a singular, large-scale myopathy event. Analyses 
of the individual results confirmed that all five animals in 
this group reached peak CPK concentrations on Day 35 PI. 
In the medium-infection and high-infection groups, the 
increase in CPK concentration was not only less pronounced 
but the subsequent decrease was more protracted compared 
with the low-infection group. The CPK values remained 
higher than those recorded on Day 0 in both these groups. 
This suggests that in these groups, larvae were released into 
the bloodstream in waves rather than in a single event. This 
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further supports the hypothesis that development of some 
larvae may have been delayed. In rats and humans, increases 
in CPK levels were attributed rather to the level of individual 
response of the host than to specific damage caused by the 
parasite (Wisniewska 1970). In this study, however, peak 
concentrations corresponded with the arrival of newborn 
larvae in the muscles around Day 35 PI. According to 
Srivastava and Chosdol (2007), CPK levels may rise within 
3–6 h in humans following a heart attack and will return to 
normal levels within 12–48 h, if no further damage occurs. 
The results from this study appear to support this, as in the 
low-infection group, CPK levels decreased immediately 
after an initial peak on Day 35 PI. However, in the other two 
groups, CPK did not reach normal levels. This would suggest 
that muscle damage continued beyond the peak observed on 
Day 35 PI and further supports the hypothesis that larvae 
may have been released in waves in the medium-infection 
and high-infection groups. 

Contrary to the case in human trichinosis, increases in CPK 
levels in this study did not exceed the concurrent increase 
of other enzymes (Wisniewska 1970) and in fact was less 
prominent compared with LDH and AST in this study. 
The fact that CPK levels in the low-infection group did not 
increase from their lowest levels on Day 49 PI and Day 56 
PI, or persist at concentrations higher than those observed 
on Day 0, may suggest that all of the larvae had invaded 
the host musculature earlier. No new events of myopathy 
occurred after Day 35 PI, thus, CPK concentrations decreased 
to normal levels. However, in the medium-infection group, 
there is a possibility that the initial damage was more severe 
and, thus, the decrease in CPK levels was more protracted. In 
the high-infection group, however, initial damage caused by 
the larvae was more severe and after Day 35 PI, new larvae 
continued to be released from the intestine. This explains 
the subsequent increase in CPK at Day 49 PI. The negative 
correlation observed between mean blood glucose and mean 
CPK in the medium-infection group may be explained by the 
fact that CPK levels continued to decrease beyond Day 49 PI, 
following its initial peak on Day 35 PI, whereas blood glucose 
levels increased again after Day 49 PI. If a second wave of 
larvae was released in this group, as suggested by the rise 
in glucose levels on Day 49 PI, their numbers may have 
been too few to cause a significant increase in the already 
elevated CPK levels recorded on Day 49 PI. In the high-
infection group, however, the second wave of larvae resulted 
in a secondary increase in CPK levels, which coincided with 
the increase in blood glucose that resulted in the positive 
correlation observed in this group.

No reference ranges for LDH could be found for Nile 
crocodiles. Mean LDH of the experimental crocodiles on 
Day 0 fell well within normal reference ranges reported for 
Dwarf caimans, as reported by Diethelm and Stein (2006).

In horses infected with T. spiralis, increases in CPK, LDH 
and aldolase all peaked at the fifth week PI and LDH was 
found to be more sensitive than CPK and aldolase (Soule 
et al. 1989). The sensitivity of LDH was also supported by 

results from the current study, even though both LDH and 
AST concentrations peaked later than in the case of CPK. The 
delayed increase in LDH and AST observed in this study 
appeared not to coincide with larval migration, but serum 
concentrations of enzymes might have been influenced by 
other factors (Srivastava & Chosdol 2007). Although the 
mean increase in LDH values appeared to be correlated with 
infection intensity, no direct correlation between these two 
factors could be established. Koudela and Schanzel (1980) 
reported that the relationship between levels of LDH and 
infection intensity was not always apparent when comparing 
individual animals of the same group. In guinea pigs infected 
with Trichinella spp. larvae, LDH continued to increase until 
Day 42 PI (Koudela & Schanzel 1980), which was similar 
to the results observed in the low-infection group in the 
current study. The continued increase in LDH observed in 
the medium-infection and high-infection groups once again 
suggests that larval development and subsequently larval 
migration may have been delayed in these groups. Similar 
to CPK, LDH was also negatively correlated with serum 
glucose in the medium-infection group. Although LDH 
concentrations increased beyond Day 35 PI, there was also a 
sharp decrease immediately following a peak on Day 49 PI. 
The differences in time to reach peak LDH and AST values 
observed between the experimental groups suggest that these 
enzymes are not necessarily indicators of muscle damage. 
The kinetics of these enzymes appears to correspond better 
with the migration of larvae rather than with actual damage 
associated with the larvae, this is in agreement with the 
hypothesis of Koudela and Schanzel (1980).

An indirect ELISA was developed to detect the immune 
response of crocodiles to T. zimbabwensis infection (Ludovisi 
et al. 2013). Immune responses could be detected up to 
six weeks PI, but not beyond this time, and the ELISA 
was deemed to be unsuitable for surveillance purposes 
(Ludovisi et al. 2013). Previous studies have shown that 
the intensity of infection cannot always be correlated with 
antibody titres (Ludovisi et al. 2013; Pozio et al. 2002; Vu Thi 
et al. 2010). In crocodiles, interpretation of antibody titres 
is also complicated, as the immune response may also be 
influenced by age, temperature, season, and hormone levels 
(Brown et al. 2001; Ludovisi et al. 2013). Gamble et al. (1996) 
reported on the efficacy of enzyme immunoassays to detect 
light infections and indicated that the time period between 
infection and sero-conversion of the host was problematic in 
surveillance. The results from the present study confirm this, 
since the time from infection to sero-conversion ranged from 
Day 21 PI to Day 56 PI. Kinetics of the antibody response 
additionally suggest mean sero-conversion in the high-
infection group to have been delayed by a week compared 
to the medium-infection group and by two weeks compared 
to the low-infection group. Furthermore, in this study, 
OD values for 10 of the crocodiles decreased in the week 
following sero-conversion before increasing again. Thus, 
even if the initial period of infection is known or suspected, 
surveillance studies will not be effective where they have 
to rely on a single sample, as the potential will always exist 
for false negative results to be obtained. Similar to results 
obtained from a previous study (Ludovisi et al. 2013), no 
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positive correlation between infection intensity and the time 
to sero-conversion could be established in this study, as has 
been reported in previous studies involving mammalian 
hosts (Gottstein et al. 2009). Results from this study were 
also in agreement with those from previous studies where 
no direct correlation could be established between infection 
intensity in muscles and antibody levels (Ludovisi et al. 2013; 
Pozio et al. 2002; Vu Thi et al. 2010).

In crocodiles, the potential effects of individual hormonal 
status, temperature fluctuations and age on the immune 
response (Brown et al. 2001; Ludovisi et al. 2013) may 
explain these phenomena. However, despite the observed 
differences between infection intensity and time to sero-
conversion, the lower humoral response associated with 
higher infection levels may also be the result of larvae being 
released at different intervals, which could result in smaller 
but repetitive responses from the host. The results revealed 
similar problems to those reported in mammals infected with 
other Trichinella species, which showed that in most cases 
antibody titres could not be detected indefinitely (Gottstein 
et al. 2009; Ludovisi et al. 2013; Soule et al. 1989).

Conclusion
For logistical reasons the study design did not make 
provision for a control group. However, the results remain 
valuable, as additional new information about biochemical 
parameters and humoral immune response of Nile crocodiles 
(Crocodylus niloticus) to infection with Trichinella zimbabwensis 
was obtained. 

The fact that hypoglycaemia was not observed in crocodiles 
experimentally infected with T. zimbabwensis suggests that 
Nile crocodiles may up-regulate blood glucose as the demand 
for energy is increased by the parasites. This phenomenon 
requires further investigation in order to elucidate the 
specific mechanisms and pathways involved, and to 
determine whether this is common among other ectothermic 
hosts. Future research should be aimed at determining the 
influence of infection dose on the rate of development and 
release of larvae, and the impact of these factors on the 
different haematological and biochemical parameters of the 
host.

High variability in ALT changes between individual 
crocodiles supports the finding that increased ALT activity 
is not reliable as an indicator for muscle damage and that 
increases in ALT are rarely observed in cases where damage to 
the liver is not involved. With exception of the high-infection 
group, it is suggested that differences in ALT concentrations 
observed in the crocodiles can largely be attributed to 
variations in individual physiology of the crocodiles.

The more reliable indicator of muscle damage was CPK, 
as its peak values correspond with the arrival of larvae 
in the muscle, in spite of previous reports to the contrary. 
There was lack of correlation between infection intensity 
and changes in biochemical parameters and this supports 

the findings that other host factors, such as hormone levels 
and the age of the animal, as well as environmental factors, 
including temperature and season, may impact on the 
immune response of reptiles. The lack of information on 
normal reference ranges for haematological and biochemical 
parameters in Nile crocodiles should be addressed in future 
research.
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